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Abstract

According to recent studies, about 80% of data in companies are unstructured and hold
enormous potential for industry insights [1]. Often, these data need to be classified to provide
valuable insights into various domains such as process improvement, increased employee
engagement, and cost reduction. Text classification is a classic supervised learning task [2],
but to train a classifier using a modern neural network requires labeled data, which are
scarce [3]. Manual creation of labeled data sets for specific tasks is often used as a solution.
However, manual labeling is time-consuming and therefore leads to high labor costs [4, 5, 6,
7, 8].

In this Master’s thesis, we investigate the use of a combined approach of Natural Language
Processing (NLP) techniques to better understand safety issues in the automotive industry.
Using an open-source data set from the National Highway Traffic Safety Administration (NHTSA)
containing customer safety-related complaints over the past 25 years, we develop an algorithm
to map a customer problem to predefined classes of vehicle components. Our goal is to
develop a framework that can be flexibly adapted to multiple application areas to obtain
multi-class labeled data for predefined classes that can be further used for supervised machine
learning tasks.

We investigate the combination of expert knowledge and pre-trained word and sentence
embedding models to obtain labeled data from the data set. The classification process is
based on the similarity of a single document sentence to each of the target classes represented
by a set of expert-defined descriptions, and is evaluated based on the cosine similarity of
their vector representations. The results are presented as a structured labeled data set with a
similarity score for each sentence-class pair. In addition, the challenges during the process
are described and the usefulness of using further unsupervised learning methods to achieve
the described goals is discussed.

To corroborate our findings, employees of the cooperating company helped us validate the
results. We show that using our approach saves up to 79% of labor time compared to manual
annotation while providing 3.5 to 20 times more training data. The Sentence-BERT-based
embedding models perform the classification task well, achieving high F1-scores of up to 1.0.
We also believe that the proposed approach has the potential to be used for unsupervised
text classification.
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Kurzfassung

Aktuellen Studien zufolge sind etwa 80% der Daten in Unternehmen unstrukturiert und ber-
gen ein enormes Potenzial für Brancheneinblicke [1]. Häufig müssen diese Daten klassifiziert
werden, um wertvolle Erkenntnisse in verschiedenen Bereichen wie Prozessverbesserung,
Steigerung des Mitarbeiterengagements und Kostensenkung zu gewinnen. Die Textklassifizie-
rung ist eine klassische Aufgabe des überwachten Lernens [2], aber um einen Klassifikator
mit einem modernen neuronalen Netzwerk zu trainieren, sind gelabelte Daten erforderlich,
die nur selten vorhanden sind [3]. Die manuelle Erstellung von gelabelten Datensätzen
für bestimmte Aufgaben wird oft als Lösung verwendet. Das manuelle Labeling ist jedoch
zeitaufwändig und führt daher zu hohen Arbeitskosten [4, 5, 6, 7, 8].

In dieser Masterarbeit untersuchen wir die Verwendung eines kombinierten Ansatzes von
Natural Language Processing (NLP) Techniken, um Sicherheitsprobleme in der Automobilin-
dustrie besser zu verstehen. Unter Verwendung eines Open-Source-Datensatzes der National
Highway Traffic Safety Administration (NHTSA), der sicherheitsrelevante Kundenbeschwerden
der letzten 25 Jahre enthält, entwickeln wir einen Algorithmus zur Zuordnung eines Kun-
denproblems zu vordefinierten Klassen von Fahrzeugkomponenten. Unser Ziel ist es, ein
Rahmenwerk zu entwickeln, das flexibel an verschiedene Anwendungsbereiche angepasst
werden kann, um mehrklassige gelabelte Daten für vordefinierte Klassen zu erhalten, die für
überwachte maschinelle Lernaufgaben weiter verwendet werden können.

Wir untersuchen die Kombination von Expertenwissen und vortrainierten Wort- und
Satzeinbettungsmodellen, um beschriftete Daten aus dem Datensatz zu erhalten. Der Klassifi-
zierungsprozess basiert auf der Ähnlichkeit eines einzelnen Dokumentensatzes mit jeder der
Zielklassen, die durch einen Satz von durch Experten definierten Beschreibungen repräsen-
tiert werden, und wird auf der Grundlage der Kosinusähnlichkeit ihrer Vektordarstellungen
bewertet. Die Ergebnisse werden in Form eines strukturierten, beschrifteten Datensatzes
mit einer Ähnlichkeitsbewertung für jedes Satz-Klassen-Paar präsentiert. Darüber hinaus
werden die Herausforderungen während des Prozesses beschrieben und die Sinnhaftigkeit
der Verwendung weiterer unüberwachter Lernmethoden zur Erreichung der beschriebenen
Ziele diskutiert.

Um unsere Ergebnisse zu untermauern, halfen uns Mitarbeiter des kooperierenden Un-
ternehmens bei der Validierung der Ergebnisse. Wir zeigen, dass die Verwendung unseres
Ansatzes im Vergleich zur manuellen Annotation bis zu 79% der Arbeitszeit einspart und
gleichzeitig 3,5 bis 20 Mal mehr Trainingsdaten liefert. Die auf Sentence-BERT basierenden
Einbettungsmodelle erfüllen die Klassifizierungsaufgabe gut und erreichen hohe F1-Werte
von bis zu 1,0. Wir glauben auch, dass der vorgeschlagene Ansatz das Potenzial hat, für die
unüberwachte Textklassifizierung verwendet zu werden.
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1. Introduction

1.1. Background

This master’s thesis was done in collaboration with a German Management- and IT-Consulting
company with an international presence (hereafter referred to as “the company"). As a digiti-
zation expert, it provides consulting services worldwide to optimize and digitize customers’
processes across the entire value chain with its Management Consulting, System Integration,
Managed Services, and Digital Services & Solutions service areas. As an industry expert -
especially for mobility and manufacturing - it offers its customers not only comprehensive IT
expertise, but also in-depth management and process know-how. The company also transfers
strategic innovations to other industries. Headquartered in Ludwigsburg, north of Stuttgart
has more than 3200 employees advising over 300 clients from 19 locations - Ludwigsburg
(3x), Berlin, Frankfurt am Main, Ingolstadt, Munich, Nuremberg, Dusseldorf, Wolfsburg (2x),
England (Reading), the USA (Atlanta), China (Shanghai), Romania (Cluj-Napoca, Timis, oara),
the Czech Republic (Prague) and Austria (Zell am See). The company supports its customers
on a national and international level both strategically and operationally. With its extensive
international project experience, an established partner network, and international locations,
it supports its customers in both national and international projects and globalization plans.

On the one hand, this mutually beneficial collaboration provided access to the company’s
employees, who have significant working experience in the automotive industry and therefore
are considered domain experts. Their expertise is useful in evaluating the results of this thesis.
On the other hand, the company is able to expand its experience in text mining and possibly
develop a use case for one of its service lines.

As the amount of text and unstructured data is rapidly increasing, it accounts for 80%
of internal data [1], but only 18% of organizations are able to capitalize on these data [9].
Every day consumers give their feedback and describe the positive and negative sides of
their vehicles. Among these data, valuable insights could be found to help automotive
manufacturers achieve advantages in various areas such as assessing the strong and weak
sides of their vehicles, staying informed about customer preferences and industry trends, and
potentially improving the processes across the entire value chain. The improvements in this
area could benefit both the company and its customers.

The growing potential of machine learning applications is remarkable in the automotive
sector. Due to recent advances in the field of natural language processing (NLP), organizations
are able to extract valuable information from text. The company noticed the growing interest
of customers in text mining tasks and started investigating use cases that could be built upon.
One of the attractive use cases is classifying automotive consumer complaints with respect
to vehicle components. This could lead, for example, to faster response to safety-related
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1. Introduction

issues, better personalization of customer service, or detection of brand-related trends. This
implementation could make the processing of customer complaints more efficient.

1.1.1. Problem Description

Text classification is a typical supervised machine learning task where the model goes through
a training, testing, and validation phase. To train a classifier, a labeled data set is required.
However, many tasks in the industry are customer-specific, and labeled data is scarce. We
can consider manually creating an annotated data set to train the classifier on these data, but
in this case, we need to consider the following issues:

• First, if we want to conduct a supervised classification method, we need to annotate our
data manually, which is time-consuming because supervised text classification methods
rely on a large amount of manually annotated data [6, 10], and therefore incur high
labor costs.

• Second, in the case of multi-class classification, a manually labeled data set cannot
be easily adapted to changes in the problem description, e.g., when additional target
classes are added or the hierarchy between classes is changed. As Romera-Paredes and
Torr [11] showed, many approaches cannot keep up with new classes when they appear
after the training phase. In such cases, much additional effort may be required to adapt
the classifier, up to and including a complete relabeling of the data.

• Third, we may not want to derive all available topics from the data set, but are only
interested in a few relevant classes. Using a supervised classification method would
require either annotation of documents that are not of interest or additional data cleaning
steps to remove irrelevant documents from the data set. In either case, significant labor
costs could be incurred.

• Fourth, in industrial practice, it is also often necessary to classify not only in terms
of topics, but also in terms of other features such as sentiment. For example, we
are interested in classifying documents that relate to vehicle components and have a
negative sentiment in the form of a problem description or a complaint.

• Fifth, the length of documents can vary considerably, from a few words to several dozen
sentences reflecting either one, several, or no target topic. In this case, we also want to
capture plural target topics hidden behind single sentences.

Costly data preparation leads to business incentives to explore the area of multi-class text
classification. The question arises whether training data for multi-class text classification can
be obtained by combining the knowledge of domain experts, who not only have experience
in their field but also a good understanding of the underlying data set, with pre-trained,
transformer-based language models. We also want to investigate whether the resulting
approach can help overcome classification challenges, such as adapting flexibly to changing
requirements.

2



1. Introduction

1.1.2. Project Goals

The current approach to solving the described problem requires that each document is
labeled individually to create a vocabulary-specific training data set for further classification.
This process must be done manually and is therefore time-consuming and not flexible. For
example, for a data set of 100,000 documents, all documents must be manually read and
labeled. In addition, this approach is not adjustable to changing requirements because the
labels remain static and cannot be quickly customized. For example, if a higher level of
granularity is required, the entire data set must be labeled from the beginning, which in turn
causes high personnel costs and time delays.

We propose a combined approach involving domain expertise and various NLP techniques
to solve the training data preparation problem. The underlying problem is divided into
simple steps performed by domain experts aiming to solve the problems described above.

The process involves the creation of a pipeline with several steps such as data preprocessing,
creation of class descriptions, extraction of context windows [12] and their evaluation to become
context rules, computation of the class vectors with a subsequent document classification, and
result validation. Our goal is to provide a framework for creating training data from unlabeled
text corpora that can be generalized to classification tasks in other industries. A supervised
text classifier is supposed to be trained using the output of our approach. Thus, it represents
the first stage of a semi-supervised classification approach.

The results are presented as a structured data set consisting of a unique complaint identifier,
a full text of the document, a classified sentence, a corresponding class, and a similarity score.
The similarity score serves as an indicator of belonging to the target class and as a threshold
for separating the classified data from the less relevant data. The assessment of the results
is conducted in both intrinsic and extrinsic ways with the involvement of industry experts.
The results are quantified using standard evaluation metrics such as precision, recall, and
F1-score. The agreement rate between the validators is also reported.

1.2. Research Questions

The following research questions are investigated in this thesis:

• RQ1: What are the challenges faced when trying to create structured data sets from
unstructured documents?

• RQ2: Which NLP methods can be combined with the domain expertise to facilitate the
extrapolation from context rules to training data?

• RQ3: How do these novel methods compare to current methods of unsupervised
learning in the context of automotive customer data?

The first research question aims to evaluate the viability of the proposed approach and
identify limitations and potentials for future research. The second research question examines
different NLP approaches to classification, particularly those based on the creation of rules

3



1. Introduction

for target classes. The different methods are then combined to meet the specific goals
of our task. The third research question describes the advantages and disadvantages of
common unsupervised learning techniques applied to our task and explores their potential
for facilitating classification activities.

1.3. Delimitations

For doing data and NLP-related experiments, Python is commonly regarded as the language
of choice among data scientists and academics. In the last several years, a large number of
NLP packages with Python-enabled bindings have appeared. Therefore, for all experiments in
this thesis, we utilize the Python programming language and its accompanying libraries. For
our goals, we mainly rely on well-known data analytics Python libraries such as pandas [13],
spaCy, sci-kit learn [14], and Hugging Face [15].

We obtain our results using an open-source data set from the automotive industry that
reflects a very specific task. We do not test our approach on common data sets for the
classification tasks, but we assume that our approach can be generalized for other purposes
since the classes for each task are described manually.

The process of identifying and describing the target classes is emulated using our own
competence and comprehensive online resources.

The obtained results are not supposed to be expected as final results for a multi-class
classification. The proposed method solely aims to decrease time spent for manual data
annotation for specific topics where industry expertise is available and target topics are
predictable. Hence, a multi-class text classifier is supposed to be consequently trained using
supervised learning approaches based upon our labeled results.

4



2. Theoretical Foundation

This chapter provides information about the essential concepts for this thesis, reviews the
historical development of natural language processing, and introduces the techniques required
for text processing. In this context, the methods by which texts can be represented in vector
form are also presented. At the end of this chapter, similarity computation between vectors is
discussed and metrics for obtaining quantifiable classification results are given.

2.1. Machine Learning

Machine learning is a subcategory of Artificial Intelligence (AI) and encompasses applications
in search algorithms, text processing, predictions, planning and scheduling, computer vision,
speech recognition, and many other areas [16]. Instead of following a static algorithm
described by a human, the system learns patterns from data and improves the results by
working through the training data set multiple times. Machine Learning is divided into three
areas: supervised learning, unsupervised learning, and reinforcement learning. For the sake
of this thesis, the first and the second area are briefly described below.

2.2. Supervised Machine Learning

Supervised machine learning leverages labeled input for the training lifecycle [16]. Usually, the
labels are provided by a data scientist in the preparation phase before feeding the data into the
system. After the training phase is completed, the model can be used for further predictions.
Supervised machine learning is used for classification and regression problems [16]. Through
classification, the model maps input data to a predefined number of categories, for example,
classifying handwritten numbers in classes from zero to nine. Regression tasks, on the other
hand, are used to map the input data to a real value, for example, predicting the prices of
houses based on their characteristics.

2.3. Unsupervised Machine Learning

Unsupervised machine learning learns from unlabeled training data to combine data into
categories [16]. This technique is often used to better understand the data set by means
of clustering data into meaningful groups or identifying the similarity between data pairs.
Though the model does not require human supervision in form of labels, the explainability
of results could be limited. An example of unsupervised machine learning is grouping
customers based on their buying preferences.
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2.4. Brief History of Natural Language Processing

Figure 2.1.: A brief history of NLP.

NLP is an exciting field of computer science that focuses on understanding human com-
munication. It includes methods for assisting machines in comprehending, interpreting, and
producing human language. Natural Language Understanding (NLU) and Natural Language
Generation (NLG) terms are often used to distinguish between two applications. One should
not undervalue the depth and complexity of human language. At the same time, there is a
rising demand for algorithms that can understand language, and natural language processing
fulfills this requirement. A linguistics-based approach is used in traditional NLP techniques,
which start with the fundamental semantic and syntactic components of a language, such
as Part of Speech (POS). Modern methods can eliminate intermediary components and even
develop their own hierarchical representations for generalized tasks.

In this section, we focus on some significant events that have influenced Natural Language
Processing as we understand it now.

Although there were appealing experiments in the 1940s, the IBM-Georgetown experiment
of 1954, which demonstrated the automatic translation of about 60 phrases from Russian
into English, can be seen as the first significant achievement in the field [17]. Despite the
limitation of software and hardware resources, some of the syntactic, semantic, and linguistic
difficulties were identified, and an effort to solve them was made. The next remarkable event
was the introduction in 1957 of the book Syntactic Structures by Noam Chomsky where he
highlighted the significance of sentence structure for language comprehension [18].
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Though the NLP researchers had access to significant funding to support their efforts,
the United States National Research Council (NRC) was established in 1964 to assess the
development of NLP research. Emphasized in the report challenges associated with machine
translation highlighting the implementation cost had a serious impact on funding decisions
that almost brought the NLP research to an end [19].

The study of world knowledge had a phase from the 1960s to the 1970s during which
semantics took precedence over syntactical structures. One important discovery in this period
was Schank’s conceptual dependence, which described the language in terms of semantic
primes without syntactical processing [20].

The grammatico-logical phase, in which linguists established various grammar structures
and began associating meaning in phrases concerning users’ intentions, commenced in the
early 1980s. This period was remarkable for the creation of popular tools for information
retrieval, parsing, and machine translation such as METEO [21].

Most NLP-based systems adopted numerous novel concepts for data collection throughout
the 1990s, such as comprehending words based on their occurrence and co-occurrence
utilizing probabilistic-based techniques or employing corpora for linguistic processing [22].
For many NLP applications, supervised and unsupervised techniques such as n-grams and a
bag-of-words (BoW) representation with machine learning algorithms like multinomial logistic
regression, support vector machines, Bayesian networks, or expectation-maximization were
prevalent [23, 22].

In the early 2000s, a paper by Bengio et al. [24] introduced the "dense vector representation"
as an alternative to common approaches of "one-hot vector" or bag-of-words. This period was
also marked by significant research by Collobert and Weston who in addition to bringing
attention to concepts like pre-trained word embeddings and convolutional neural networks
for text also shared the lookup table or embedding matrix for multitask learning [25]. By
eliminating the hidden layer and using approximations for a softmax function, Mikolov et
al. [26, 27] increased the effectiveness of training the word embeddings given by Bengio et al.
This resulted in "word2vec", an effective large-scale implementation of the embeddings. The
word2vec architecture is represented through two implementations: continuous bag-of-words
(CBOW), which predicts the center word based on the words around it, and skip-gram,
which does the reverse and predicts the words around the middle word. This method and
the large text corpora used for the training allowed for capturing multiple semantics and
relationships. The model proposed by Sutskever et al. [28] called the sequence-to-sequence
model is a general neural framework composed of an encoder that processes items in the
input sequence one by one to compile the captured information into a vector and a decoder
that predicts the output item by item based on both input sequence and current output
states. Increasing discussions around deep learning led to the expanded implementation of
neural networks for text processing. Previously used for the processing of visual content,
Convolutional Neural Networks (CNNs) became common for various NLP-related challenges
such as Sentence Classification [29], Text Classification [30], Sentiment Analysis [31], Text
Summarization [32], Question Answering [33], and Machine Translation [34].

A further innovation was suggested by Bahdanau et al. [35] featuring the attention mech-
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anism that allows the model to conduct an automatic search for the relevant part of the
input text to predict the output word avoiding the hard text segmentation. Combined with
the usage of transformers, this method became the cutting-edge architecture for NLP tasks,
surpassing other neural models like Convolutional and Recurrent Neural Networks (RNNs)
for the tasks in both NLU and NLG [36]. An introduction of pre-trained models such as
Bidirectional Encoder Representations from Transformers (BERT) allowed models in the first step to
use generic text corpora for training and subsequently being adapted for specific downstream
tasks [37]. As a response to the huge computational overhead for identifying similarity pairs
in text using the BERT model, the Sentence-BERT (SBERT) modification was introduced, which
dramatically reduced the time required for finding similarity pairs of text embeddings [38].

2.5. Basics of Text Processing

Natural language is intrinsically ambiguous, especially when it is in a written form. Out of
170,000 words in a dictionary, only roughly 10000 are used on a regular basis [39]. When
processing a natural language, it is often useful to group language features into multiple
categories that could be identified on the basis of linguistic features. For example, such
features can have morphological, lexical, semantic, or syntactic natures. In this thesis,
primarily morphological and lexical analysis come into consideration.

2.5.1. Morphological analysis

Morphology describes the shape of a word and its internal structure. For morphological
analysis, we rely on the smallest parts of the word holding a unique meaning which are
called morphemes. They could describe the meaning of the word, its origin, or its grammatical
role. Some tasks that are simple for humans such as recognizing the morphological meaning
of the words “walk, walking, walked” are complex for a computer. A large number of various
combinations substantially increases the comprehension complexity for computational calcu-
lations. To reduce this complexity, morphological analysis is often performed. Two common
approaches are stemming and lemmatization.

Stemming is used to convert words to their base morphemes or to their root. For example,
Kamath et al. [16] used the following example to represent stemming:

works→ work
worked→ work
workers→ work

One advantage of stemming is that it is generally robust to spelling errors since the correct
morpheme can be recognized anyway. On the other hand, it increases ambiguity. For example,
although all three words have the same root, the first word describes items and the third
word describes people.

Lemmatization is able to mitigate the disadvantages of stemming by reducing the words
to their dictionary form or their lemma. With reference to the example from above given by
Kamath et al. [16], the following lemmas are obtained:
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works→ works
worked→ work

workers→ worker

The advantages of lemmatization are the preservation of the context and the comparatively
high robustness against spelling errors. The disadvantage is that this algorithm is usually
slower than stemming.

2.5.2. Lexical Representations

Lexical means the segmentation of the text into meaningful components such as words.
Although words may contain multiple morphemes, they are often considered elementary
particles of natural language. It is often good practice to process text on the basis of
individual words. The process of breaking down a text into meaningful words or units is
called textittokenization [16]. A simple process of separating text by a space sometimes
produces meaningful results. Consider the following examples from Kamath et al. [16]:

The rain in Spain falls mainly on the plain.
|The|, |rain|, |in|, |Spain|, |falls|, |mainly|, |on|, |the|, |plain|, |.|

But sometimes this method fails [16]:

Don’t assume we’re going to New York.
|Don|, |’t|, |assume|, |we|, |’|, |re|, |going|, |to|, |New|, |York|, |.|

The problem with this division is that sometimes we want to consider multiple words like
"New York" as a single token. Also, problems with tokenization can be caused by built-in
punctuation. Consider the following example [16]:

Dr. Graham poured 0.5ml into the beaker
|Dr.|, |Graham poured 0.|, |5ml into the beaker.|

To overcome punctuation-related issues, we remove special characters from the documents.
The procedure is described in chapter 5.

One of the common techniques to improve text processing is removing stop words. Stop
words are the most common words that do not add meaning to the context [16]. In English,
examples of such words are "a", "the", "is", "are". The list of words to be excluded is commonly
called a stop word list.

2.6. Vector Representation Techniques for Text Data

Computational linguistics employs a variety of document representation techniques when
dealing with a corpus of documents. Some are character-based, token-based, or multi-token-
based. Both sparse and dense representations of documents are possible. When working with
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multiple corpora, we need to decide on a suitable representation for a given task. Some text
representation techniques are discussed below.

In 1954, Harris proposed a distributional hypothesis arguing that the words occurring in the
same contexts tend to have similar meanings [40]. This idea became influential for a number
of studies and plays an important role in current research [26, 41, 42]. The hypothesis could
also be explained the other way around, by assuming the distribution of morphemes with
different meanings to be different. For example, table and sun are two words with unrelated
meanings and they are not frequently used together in a sentence. On the other hand, the
words table and chair are more likely to be mentioned together in a sentence, suggesting a
certain similarity in the meanings of these words.

A straightforward approach to represent text as a vector is one-hot encoding. In this approach,
each word and symbol is represented as a vector consisting only of one and zero. Each word
in a sentence can be represented by a one-hot vector, each of which is unique. In this way, the
word can be uniquely recognized by its one-hot vector and vice versa, which means that no
two words have the same representation of a one-hot vector. Consider the following example:

The dog sat on the rug
The: [1 0 0 0 0 0]
dog: [0 1 0 0 0 0]
sat: [0 0 1 0 0 0]
on: [0 0 0 1 0 0]
the: [0 0 0 0 1 0]
rug: [0 0 0 0 0 1]

It is noteworthy that the words "The" and "the" are encoded as distinct words. Thus,
words and symbols can be encoded as unique vectors containing one and zero as constituent
elements. To represent a text document, it could be thought of as an array of vectors or
a matrix. If multiple documents need to be encoded, they can be represented as a three-
dimensional array. The resulting vectors are sparse because all elements except one are
zeros.

An early mention of a one-hot encoding application was given by Harris [40] under the title
bag-of-words, in which punctuation and grammar are neglected in favor of a multiplicity [43].
The process of converting text documents into a document-term matrix representing documents
in rows and unique tokens in columns is commonly known as count vectorization [16]. Practical
applications of the BoW model are mainly in feature generation. The most commonly
computed measure is term frequency, i.e., the frequency with which a term occurs in the text.
However, the weights of the model are primarily related to the number of term occurrences,
and although stop words are removed before count vectorization, it is often found that the
words with fewer occurrences are more informative [16].

These considerations lead us to an improved model called term frequency-inverse document
frequency (TF-IDF) that introduced the way to give greater weights to underrepresented terms
w by multiplying the term frequency (TF) by the inverse document frequency (IDF) of each
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token [44]:

w = t f × id f (2.1)

In this equation, the term frequency is calculated as the logarithmically scaled count of a
term with respect to the total number of documents, and inverse document frequency as the
logarithmically scaled ratio of the total number of documents N with respect to the number
of documents with the considered term ni. The above equation can thus be also represented
in the following way:

w = (1 + log(TFt)× log(
N
ni
)) (2.2)

The t f factor increases the value of w proportionally depending on the number of times it
appears in a given document, while the id f factor reduces the value of w depending on the
number of occurrences across all documents.

A more advanced representation of words as vectors was suggested by Salton by using the
Vector Space Model (VSM) to utilize an n-dimensional vector space in which each point can be
expressed as an n-dimensional vector [45]. VSM provides a framework in which word vectors
can be represented and compared given that semantically similar words are supposed to have
similar representations. It is common to call word vectors embeddings [16] that are often used
throughout this thesis.

2.6.1. Word2vec Model

Since most of the work in this thesis is based on operations with text embeddings, we want
to briefly explain how word embeddings are obtained in practice.

The architecture proposed by Mikolov et al. [26] in 2013 uses large data sets to obtain
continuous vector representations of words. The authors avoided the commonly used dense
matrix multiplications, making their model fast and efficient at learning vector representations
from much larger text corpora than previous technologies. They named their architecture
word2vec and used CBOW and skip-gram model as main components. The authors stated that
relational and linguistic similarities between words can be found using vector arithmetic. For
example, they showed that the word "queen" can be found by searching for the closest vector
based on cosine similarity after performing arithmetic operations on the words "king", "man",
and "woman":

v(queen) ≈ v(king) - v(man) + v(woman)

This concept can be also applied to other objects. For instance, using the embedding vectors
for the words "Germany", "Berlin" and "Austria" and calculating Berlin – Germany + Austria
results in a vector that is very close to the vector representing the word "Vienna". Analogically,
this leads to similarities between pairs "Man - Woman" and "Boy - Girl". Visualizations of
these word embedding pairs are presented in Figure 2.2.
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Figure 2.2.: Representation of dependencies between word embedding pairs in two dimen-
sions

The terms CBOW and skip-gram model introduced above are briefly explained below. The
CBOW method is used to predict the central word depending on the surrounding words and
a certain context window size. The Skip-Gram model performs the reverse process, i.e., in
this case, the neighboring words are to be predicted based on the word in the center. Both
techniques are shown using the context window length of three. The target words are colored
red and the context words are colored blue:

CBOW

Natural language processing is fun

Natural language processing is fun

Natural language processing is fun

Skip-gram

Natural language processing is fun

Natural language processing is fun

Natural language processing is fun

In our thesis, we conducted experiments using tok2vec and embeddings by spaCy’s
en_core_web_lg model that relies on word2vec representations. The procedure is described in
chapter 6.

2.7. Similarity Calculation for Embeddings

The similarity between two words or texts can be measured quantitatively and the words or
texts representing similar contexts are supposed to have higher similarity scores. We introduce
a technique to compute the similarity between two vectors in this section.

Cosine similarity is a measure of similarity between two vectors in a multidimensional space
and it is defined as the cosine angle between these vectors. It is calculated as the dot product
of the vectors divided by the product of their lengths. This measure is not determined by
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the dimensionality of the vectors but only by the angle between them. The cosine similarity
varies in the interval [−1, 1].

The dot product between two N dimensional vectors x and y is calculated in the following
way:

a · b =
N

∑
i=1

aibi (2.3)

The length of a vector x is defined as follows:

|a| =

√√√√ N

∑
i=i

x2
i (2.4)

Han et al. [46] provide the following formula to compute the cosine similarity:

similarity(x, y) = cos(θ) =
x · y
|x||y| (2.5)

The result of this computation is also called the similarity score throughout this thesis.

2.8. Precision Metrics

Classification tasks can be evaluated by using multiple metrics. Many of them rely on the
terms true positive, false positive, true negative, and false negative. As "true" or "false" is described
whether the classification task was performed correctly. "Positive" and "negative", in contrast,
indicate whether a sample belongs to a target class or not. Further, we introduce commonly
used classification metrics, which are precision, recall, and F1-score.

Precision represents correctly predicted samples with respect to all samples predicted as
positive [47]:

Precision =
True Positives

True Positives + False Positives
(2.6)

Recall stands for a fraction of correctly predicted samples to all relevant samples [47]:

Recall =
True Positives

True Positives + False Negatives
(2.7)

F1-score is another common classification metric. It is computed as a harmonic mean of
precision and recall [47]:

F1− score = 2 · Precision · Recall
Precision + Recall

(2.8)

These metrics are used for the evaluation of the classification algorithm in chapter 6.
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In this chapter, we introduce the concepts on which the implementation of this thesis is
built. We start with an overview of the NLP frameworks that serve as inspiration for our
approach and introduce the idea of pre-trained models. We then describe the transformer-
based architecture and introduce the models used in this work. Finally, two unsupervised
learning approaches commonly used to facilitate text classification tasks are presented.

3.1. Dataless Classification

A significant part of the work related to our thesis stems from the zero-shot setting, which
means that we try to classify documents without any labels [10]. The mostly related framework
was introduced by Chang et al. [48] under the term dataless classification. It uses Explicit
Semantic Analysis (ESA) [49] for a representation and further comparison of the documents
and classes in the same latent space. The idea behind this framework is to mimic how easily
people can classify documents based on their understanding of the underlying classes [48].
The framework has a broad application area allowing the use of any approach that aims to
classify data based only on the label description. A slight difference with our approach is
that we are not attempting to assign the documents to an arbitrary topic of no interest, but
we want to classify the documents into certain pre-defined classes. However, we refer to
dataless classification as it has comparable characteristics to our approach, such as classifying
documents into multiple classes in the context of zero-shot learning. It can be further divided
into two sub-categories:

1. Unsupervised vs. semi-supervised approaches.

2. Training a tailored model vs using pre-trained models.

3.1.1. Unsupervised Approaches

The document classification procedure based only on unsupervised approaches aims to
classify unlabeled documents by computing a similarity between the documents and target
classes.

Haj-Yahia et al. [3] used a combination of keyword enrichment (KE) and unsupervised
classification technique based on cosine similarity after performing Latent Semantic Analysis
(LSA) [50]. Ha-Thuc and Renders [5] utilized ontological knowledge to find pseudo-relevant
documents from the Web without labeled data, and employed topic modeling with ontological
guidance to obtain classified documents. Meng et al. [8] used the labels of each class only for
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training classification models on unlabeled data. Song and Roth [51] argued that teaching
the model to understand labels can be used without additional supervision to accurately
categorize the documents.

We expect that our approach can be used completely unsupervised in the future after a
successful investigation of the challenges and trade-offs described in chapter 6. However, we
currently propose to use it for labeling a subset of documents in combination with training a
supervised text classifier.

3.1.2. Semi-Supervised Approaches

Semi-Supervised approaches are performed using a two-step process. First, an unsupervised
learning approach is used to extract meaningful labels for the underlying data. Second,
a text classifier is trained upon the derived annotated data. Liu et al. [4] use the naïve
Bayesian classification method [52] and Expectation Maximization (EM) [53] algorithms to build
a classifier based on a subset of unlabeled documents and user-provided keywords describing
target classes. They first identify documents that could match the given keywords and then
use the data as input for a text classifier. Analogically, Johnson and Zhang [54] propose a
CNN model that first utilizes unlabeled data to learn the embeddings of small text regions
and then labels the documents. Our approach falls into the first step of this category, as
it identifies labels for documents based solely on the vector similarity between document
sentences and the target class. Then, the sentences with high similarity to the target classes
are used to train a multi-class text classifier.

3.1.3. Training a Tailored Model

A model can be trained from scratch by relying on available data sources, either derived from
a comprehensive, freely available world knowledge such as Wikipedia with 2.5B words and
BookCorpus with 800M words used for the training of BERT [37]. However, this approach
requires significant investment in time and resources. We omit the training process of a
tailored model in favor of a pre-trained model.

3.1.4. Using Pre-Trained Models

Another option to obtain text embedding was to leverage a state-of-the-art pre-trained model
for our work. Pre-trained language models are commonly used for text classification and
achieve state-of-the-art performance on most data sets [10]. Meng et al. [8] used pre-trained
neural language models for understanding the target classes and further for document
classification. Chai et al. [55] employed pre-trained models to propose a framework for text
classification, which is expected to connect each category label with a category description.
The mechanism behind the pre-trained models utilized for our approach is described below.
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3.2. Pre-trained Models for Natural Language Processing

Recent studies on pre-trained models(PTMs) have shown that learning a language model from
large unstructured corpora is possible and more beneficial for downstream NLP tasks than
training a new model from scratch. This method is used to pre-train a single model to
work with multiple different downstream tasks, a method called transfer learning. Rising
computational power and the introduction of deep models such as Transformer [36] have led
to remarkable advances in the architecture of PTMs [56].

The number of model parameters has significantly expanded as a result of the development
of deep learning. Proper training of model parameters with overfitting prevention requires a
data set of significant size. However, the high annotation cost of creating large labeled data
sets [4], especially with high semantic and syntactic similarity, makes this a major challenge
for NLP activities [56]. For this reason, using large unlabeled corpora is a much more
straightforward task. In this case, word representations can first be learned from unlabeled
text data and then used for other tasks. The advantages of using word representations
extracted from large unlabeled text corpora are supported by recent studies [10].

Erhah et al. [57] summarized the advantages of pre-training as follows:

1. Due to the use of huge text corpora, universal language representations can be learned
in the pre-training process.

2. A model can be easier initialized increasing generalization performance and making
the convergence on the downstream task faster.

3. Pre-training can avoid overfitting with small amounts of data.

All modern PTMs can be divided into two generations. The first-generation PTMs are
able to learn good word embedding capitalizing on shallow architectures. For example,
Skip-Gram [26] and Global Vectors for Word Representation (GloVe) [58] have a simple im-
plementation, although they can capture high-quality semantic similarities among words.
However, these models are context-free and are not able to capture more advanced concepts
such as polysemous disambiguation, syntactic structures, semantic roles, and anaphora [56].

The first successful second-generation pre-trained model for NLP was proposed by Dai and
Le [59]. They used Long Short-Term Memory (LSTM) [60] for the instantiation of the Language
Model (LM) and observed improvements through pre-training in multiple classification tasks.
The main feature of the second-generation PTMs is their focus on the extraction of contextual
word embeddings. Among successful implementations are ELMo [61], OpenAI GPT [62], and
BERT [37].

The difference between non-contextual and contextual embeddings is whether or not the
word embedding dynamically adjusts to the context where it appears, and is illustrated in
Figure 3.1.

Since the use of non-contextual or contextual embeddings has been an essential part of this
work, the difference between them is further explained in more detail.

To obtain non-contextual embeddings, first, separate words have to be mapped on the
distributed vector space. This could be formally explained in the following way: we map
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Figure 3.1.: Generic Neural Architecture for NLP

each word x to a vector ex ∈ RD
e with a lookup table E ∈ RDe×|V|, where De relates to the

dimension of token embeddings and V stands for the vocabulary [56]. In the next step, the
training of these embedding along with other parameters takes place. The main disadvantage
of such models is that they are static and therefore cannot represent words with multiple
meanings [56].

The problem with the dynamic representation of word embeddings can be tackled by
distinguishing word semantics in different contexts. In a text containing tokens x1, x2, · · · , xT

where xT ∈ V , the contextual embedding of xT is dependent on the entire text. Qiu et al. [56]
represented this dependency in the following equation:

[h1, h2, · · · , hT] = fenc(x1, x2, · · · , xT), (3.1)

where fenc(·) is a neural encoder and ht is called contextual embedding as it contains additional
information from the context. Neural encoders are commonly divided into two models:
sequence models and non-sequence models. Sequence models are represented through
models with short memory such as LSTM [60]. Non-sequence models include Transformer-
based models. In practice, sequence models are easier to train and good results can be
achieved on various NLP tasks. In contrast, the Transformer requires a larger corpus and
more time to be trained but can model a dependency between every two words in a sequence
of words making it a state-of-the-art architecture for the pre-trained models.

3.3. Transformers

Before the introduction of Transformer in 2017 by Vaswani et al. [36], sequence processing
was primarily conducted employing recurrent neural networks, gated recurrent neural
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networks [63], and LSTM [60] architectures. Training an RNN-based model is slow and it
can not deal well with a vanishing gradient problem that occurs when sequences are long.
Its successor, LSTM [60] can reduce the negative effects of the backpropagation problem,
but the model training requires even more time because of higher model complexity. In
addition, each of the models processes text sequences token by token not allowing to make
use of modern GPUs to process input in parallel. The authors of the Transformer architecture
suggest an architecture that allows processing data in parallel and relies on the mechanism
called self-attention [36].

3.3.1. Architecture

The Transformer architecture comprises two components, which are the encoder (shown in
Figure 3.2) and the decoder. Both of them are composed of components that can be stacked
on top of each other multiple times, which is described by Nx in the figure. Most of these
components are multi-head attention and feed-forward layers. The role of the encoder is to
extract features from the input sentence, and the decoder produces the output sequence of
symbols, for example in the case of a translation downstream task. In this thesis, we rely on
the encoder part of the transformer since we are only interested in extracting features of the
input sequence.

Figure 3.2.: The representation of the encoder part of the Transformer architecture (retrieved
from [36])

3.3.2. Attention

In 2014, Bahdanau et al. [35] proposed an attention model by giving relative importance to
each word in a sequence in contrast to taking into consideration all words with the same
importance. This construct was further developed by Vaswani et al. [36] and described under
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the term self-attention, along with the Transformer architecture, in the acclaimed paper
Attention Is All You Need. The difference between attention and self-attention is where they are
applied. Attention connects both input and output and allows one to consider input when
the output is generated, while self-attention allows input sequences to interact with each
other. Further mentions refer to the concept of self-attention, as it is more relevant for this
thesis since only the input part is considered.

The self-attention mechanism allows the model to focus on the meaningful parts of the input
sequence incorporating contextual information based on the word position in a sequence. For
instance, if a model without self-attention gets the sentence "The fox did not jump over the
lazy dog, because it was scared", it could struggle with referencing the word "it" to the word
"fox" and not "dog". Self-attention could be useful in this case by putting more weight on "the
fox" when encoding the word "it". The self-attention mechanism could be briefly described
as giving weights to the input elements, and considering them when the model performs
its task [36]. It allows one to deal with long input sequences without forgetting information
from the beginning, and process these sequences in parallel.

To initialize the attention mechanism, query (Q), key (K), and value (V) matrices are
obtained from each position in a sequence. For this purpose, a matrix of input embeddings
(X) is multiplied with three previously trained weight matrices Wq, Wk, Wv [36]:

Q = XWq (3.2)

K = XWk (3.3)

V = XWv (3.4)

Figure 3.3.: Scaled Dot-Product Attention (retrieved from [36])

The dot product of queries and keys with dimensionality dk is computed and the result is
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divided by
√

dk to improve the stability of the model during training, followed by scaling
through a softmax layer to an interval of [0, 1], and obtaining the weights on the values [36].
The authors called the chosen constellation Scaled Dot-Product Attention, the structure of which
is depicted in Figure 3.3 and the equation for calculating the attention is given below [36]:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (3.5)

Figure 3.4.: Multi-head-attention (retrieved from [36])

An extension of the attention mechanism is called multi-head attention and its representation
is given in Figure 3.4 [36]. It improves the performance of the attention layer in two ways:

1. The ability to focus on multiple positions is expanded. For instance, when encoding the
word "it" from the sentence "The fox did not jump over the lazy dog, because it was
scared", more attention could be paid not only to the word "fox" but also to the word
"scared".

2. Multiple sets of query, key, and value matrices are considered expanding the opportuni-
ties to represent the input sequence [36].

3.4. Models

This section introduces two Transformer-based models, which are BERT and its modification
Sentence-BERT, which was created through the efforts of the team behind the original BERT
model. Two variations of the latter model are applied to this thesis. The models used are
open-source and accessible through the Huggingface Transformers library.
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3.4.1. BERT

In 2018, Devlin et al. [37] presented BERT, which outperformed previous models in several
Natural Language Processing tasks. The innovative component of BERT was the detection of
context from both the left and right directions of the target word, making the architecture
bidirectional. In contrast, previous models were able to consider the context in the left-to-right
direction or vice versa, limiting the understanding of context because words often depend on
the two surrounding sides of the sentence [37].

Bidirectional training became possible due to leveraging the technique called Masked Lan-
guage Modelling (MLM). The authors masked 15% of the input words with special tokens and
had the model predict the masked words based on the context from both sides, which allowed
for pre-training of a bidirectional transformer [37]. To capture the semantic relationships
between multiple sentences, the pre-training was extended by the technique called Next
Sentence Prediction (NSP). The idea is to train a model that correctly recognizes which sentence
is a predecessor and which is a successor from two sentences.

For BERT pre-training, large corpora from the BooksCorpus and English Wikipedia contain-
ing 800 and 2500 million words respectively are used [37]. A trained WordPiece model [64]
was used to create embeddings for all words. This model breaks long words into chunks and
is therefore able to create embeddings of previously unseen words. In the BERT architecture,
token, position, and segment embeddings are added to each token. Based on the token
embeddings, a vector representation of each vector is created. Position embeddings are used
to model the word order in a sequence. Segment embeddings allow the model to divide a
sentence into two parts and further distinguish to which sentence each token belongs. A
visual representation of different embedding types used in BERT is given in Figure 3.5.

Figure 3.5.: The input representation used in BERT (retrieved from [37])

One of the most important implications of BERT for this work is that it can capture
contextual meanings of words with multiple meanings. For example, the word "charge"
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might be used in the context of feeding electricity into an electric vehicle, or it might refer
to an amount of money for something. The possibilities of models without this contextual
distinction are considerably limited, compare in this respect with the word2vec model
described in subsection 2.6.1. BERT is released in two model sizes - BERTBASE and BERTLARGE
which differ in the number of transformer block layers, embedding dimension, and the number
of training parameters [37].

The introduction of BERT significantly altered the NLP landscape due to its efficiency in
training and, comprehensive context understanding and applicability for a wide spectrum
of NLP tasks. BERT inspired multiple recent NLP architectures, training approaches, and
modifications such as RoBERTa [65] and Sentence-BERT [38].

3.4.2. RoBERTa

A Robustly Optimized BERT Pretraining Approach (RoBERTa) [65] is an improved version of
BERT introduced in 2019. It features the dynamic masking method that creates the masking
pattern after every sequence input into the model. In this work, more data for pre-training are
used and the influence of various hyperparameters and the size of training data are evaluated.
The main difference to the BERT model are as follows [10]:

• A longer training time, a larger batch size, and more training data are used.

• The next sentence prediction task is removed.

• A more extended training sequence is utilized.

• The masking mechanism is dynamically adjusted and the full word mask is used.

3.4.3. Sentence-BERT

In 2019, Reimers and Gurevych [38] presented Sentence-BERT, which is a BERT-based mod-
ification to compare sentence embeddings using cosine-similarity. It utilizes the siamese
neural network [66] which is also called a twin neural network. The motivation behind creating
SBERT is that BERT does not compute any independent sentence embeddings and therefore
requires extensive time to perform tasks in sentence pair regression such as estimating simi-
larity between multiple sentences [38]. For example, finding two sentences with the highest
similarity score from a collection with n = 10, 000 sentences using the BERT architecture can
be performed by passing two sentences through the transformer network. However, this
task requires n(n− 1)/2 = 49, 995, 000 computations and would take 65 hours to train on
a modern V100 GPU [38]. To overcome the problem of sentence embedding, SBERT was
developed, which takes only 5 seconds to complete the task described above [38].

The model is trained using the mean of all computed tokens (MEAN-pooling) using Stanford
Natural Language Inference (SNLI) [67] and the Multi-Genre NLI (MG-NLI) [68] data set to
perform on classification and regression objective functions [38]. The classification objective
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function is calculated by concatenating the token-wise differences between two sentences u
and v and multiplying the result of |u− v| with the weight matrix Wt [38]:

o = softmax(Wt(u, v, |u− v|)) (3.6)

SBERT allows one to process two sentences simultaneously and in the same way. This
twin network starts with a BERT layer, followed by a pooling layer enabling the creation
of a fixed-size representation for input sentences of varying lengths. In the last step, the
cosine similarity between two sentence embeddings is calculated. The structure of the SBERT
network is represented in Figure 3.6.

Figure 3.6.: The SBERT architecture with classification objective function (retrieved from [38])

In our work, we employ a distilled version of RoBERTa for sentence embeddings. Knowledge
Distillation is a process to make models faster, cheaper, and lighter. It describes a traditional
approach in which a student model learns to imitate the behavior of a previously trained
teacher model. The goal of this approach is to significantly reduce processing speed while
accepting minor performance loss. Distilled models based on SBERT achieve 97.5%-100%
performance of the original model while the processing speed is improved many times
over [69].

3.5. Further Unsupervised Learning Methods

In this section, we briefly introduce unsupervised learning methods for text processing used
to answer the third research question.
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3.5.1. Clustering

While text classification is a common text analytics approach that relies on annotated data,
clustering is an unsupervised learning method that attempts to combine documents with
common linguistic features or meanings [70]. One of the most widely used approaches for
clustering texts is the k-means algorithm [71]. It aims to divide n documents into k clusters. In
the course of the k-means algorithm, text documents are subjected to tokenization, stemming
or lemmatization, and stop word removal. This is followed by vectorization using bag-of-
words or TF-IDF. Finally, the resulting document term matrix is used as the basis for the
k-means algorithm.

When using k-means, two factors need to be considered. First, the distance between two
text documents is usually measured using Euclidean distance aiming for minimizing squared
Euclidean distances. Second, some knowledge of the underlying data is required to determine
the value of k, which indicates how many clusters the data must be divided into. Shafiabady
et al. [7] applied an unsupervised clustering approach to train the Support Vector Machine
for text classification.

We used clustering as one of the unsupervised research methods to answer the third
research question. The results can be seen in chapter 6.

3.5.2. Topic Modeling

A collection of documents can be divided into several "topics" that can broadly represent the
content of the underlying documents. Topic modeling is an unsupervised learning model
that is commonly used to broadly understand the topics behind available documents. It is
a text-mining method that clusters the documents into meaningful groups. It has a bright
application area, for instance, to analyze news, historical documents, scientific publications,
or fiction [72].

Latent semantic analysis is one of the oldest topic modeling methods used to identify
relationships between individual words and documents, based on the idea that words with
similar meanings occur more frequently in the same documents [50]. LSA is an easy-to-train
and tune model, but it is quite slow when applied to large data sets. Later, the non-negative
matrix factorization (NMF) [73] was introduced to make it easier to inspect the data by removing
negative values that do not represent the true world data. Latent Dirichlet allocation (LDA) [74]
is a model that creates two lower-order document-topic and topic-word matrices from a
document-term matrix. LDA uses a stochastic, generative modeling approach that explains a
set of observations such as a collection of text documents through latent variables that can
be inferred mathematically from observable variables. LDA is often considered one of the
most popular approaches for topic modeling and the topic modeling baseline [75], and for
this reason, is used in this thesis to answer the third research question.
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In this work, we use a data set from the National Highway Traffic Safety Administration (NHTSA).
It contains safety-related defect complaints received by NHTSA since January 1, 1995. The
database encompasses over 1.3 million unique incident reports. The complaints were col-
lected through multiple communication channels including the Internet website, a hotline, a
questionnaire, and consumer letters. The database is freely available for download on the
NHTSA website.1 In this chapter we present statistics on the data set and explain meaningful
details about it.

To begin with, we want to briefly explain the current data collection process using the
report form on the Internet. The current web-based report submission form begins with the
input of the Vehicle Identification Number (VIN) to obtain the vehicle information such as make
and production year, and provide information about available recalls and safety issues. In
the next step, the incident information is collected that includes affected components and a
problem description. The affected components and a short description for each of them are
given as a multiple choice, whereby one to three components can be selected, and the problem
description is manually written with respect to provided general guidelines. Additional
details such as the date of the incident, the car crash, and the number of injured people can
be filled in. In the last step, personal information is entered and the form is submitted. The
original complaints are then published online.

The data were downloaded in several files, as the data are stored in a separate file every five
years, and concatenated in the next step. The original data set contains over 1.8 million records
and 49 fields. The fields include features such as a unique ID, complaint description, and a
corresponding vehicle component. When a complaint reports problems with multiple vehicle
components, the entry fields are duplicated except for the component description. More
than 300.000 records in the data set refer to two to three components. A rough estimation of
0.3/1.3 ≈ 0.23 tells that around a quarter of all records relate to multiple vehicle components.

Since we are primarily interested in the fields related to the complaint and component
description, we briefly describe the specifics of these fields. The complaints are written by
individuals to describe an incident with their car. It is therefore expected that many issue
descriptions have noise in form of spelling errors or missing punctuation. Additional noise
comes from the fact that the issue can have a track history and include tracking numbers and
specific words. Regarding the component description, the number of categories is limited,
but the data set is built in a hierarchical manner and features a few dozen of root classes and
multiple hundreds of sub-categories. The overview of the used fields of the data set is given
in Table 4.1.

1https://www.nhtsa.gov/nhtsa-datasets-and-apis
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Table 4.1.: NHTSA fields used for processing the data.

Field Name Description

CMPLID NHTSA’s internal unique sequence number
ODINO NHTSA’s internal reference number
COMPDESC Specific component description
CDESCR Description of the complaint

Since our thesis primarily aims to investigate the approach for the creation of the annotated
data, we simplify the complexity of the data set by flattening the hierarchy down to the root
classes, combining semantically similar classes, renaming them to match our needs, and
cutting the topics with a low number of samples. The full data preprocessing procedure is
described in section 5.4. We also reduce the size of the data set to reduce the processing time
by randomly selecting 100.000 documents. Thus, we come up with a data set containing 25
classes and 100.000 unique reports. The distribution of the number of documents with respect
to the target classes is shown in Figure 4.1

Figure 4.1.: The distribution of documents over 25 pre-defined categories used for classifica-
tion including the unclassified samples.

The final sample is highly unbalanced containing the data from 47 documents for the "back
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over prevention" to 11735 documents for the "engine" class. The sample also contains 4188
unclassified documents. The Table 4.2 presents examples of complaints from the preprocessed
data set. From them, we observe that some complaints are correctly identified, while some
are assigned to arbitrary vehicle components.

Table 4.2.: Examples of complaints in the data set.

Complaint
number

Complaint Vehicle com-
ponent

766266 when we took our vehicle in for the brakes to be
checked the rotors were so badly damaged from
the metal peeling that they had to be replaced. the
mechanic told us that for a vehicle with the amount
of miles that ours had on it that this should never
have happened unless the parts were defective. he
told us to check for a recall on this part.

service brakes

10115116 while the vehicle was parked the driver noticed a
brownish liquid leaking from underneath the vehi-
cle. the driver took the vehicle to the dealer and
the mechanic determined that the filter and other
parts needed to be replaced due to corrosion. the
vin number entered per consumer did not match
the vehicle given.

engine

529088 front seat belt attachments are too low when sitting
in seat it is very difficult to see release button.

seat belts

508445 hatchback latch failed causing door to open when
secured also replaced front brake rotorspadsshoes
also transmission leaked oil and ac compressor
failed.

power train

8013957 sunroof popped completely off the vehicle while
parked.

visibility
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This chapter describes the methodology used to answer the research questions of this thesis.
We begin by defining the terms introduced. Then, the general approach and methodology used
to answer each research question are explained. Further, six steps required for classification
using the proposed approach are discussed in detail. At the end of this chapter, the application
of unsupervised learning methods is described.

5.1. Definitions

To begin, we want to explain the terms that are essential for understanding the concepts of
this thesis.

• Categorization: In the context of this thesis, the term categorization if used as a
synonym for classification.

• Target class: The terms class, target class, pre-defined class, and topic are used as
synonyms in the context of this thesis.

• Keyword: A keyword describes important components of a target class and can be
represented by single words, word combinations, and acronyms. They can be synonyms
or words that are commonly used when referring to the class. In our work, we usually
use multiple keywords to describe the class. For example, when describing the class
"engine", we use such words as "engine", "ignition", and "generator".

• Class description: A class description is a set of specific keywords describing the class.

• Class dictionary: A class dictionary contains a set of pre-defined classes as dictionary
keys and one or multiple keywords as dictionary values.

• Label: A label indicates that a document belongs to one of the classes. It is an N : M
relationship meaning that one document can have from 0 to N labels meaning that it
either describes none or multiple target topics. In turn, the same label can be assigned
to multiple documents.

• Context: A context provides information about the environment in which a described
event takes place.

• Context window: A context window is a part of a document that has a variable length
and surrounds a class keyword. For example, in the case of the class engine, the sentence
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"yesterday I went home, and my engine stalled on the uphill slope" can be considered
a context window because it has the word "engine" inside of it, which is one of the
predefined keywords.

• Evaluation of context windows: The process performed by domain experts to assess
which of the extracted context windows meet the criteria to qualify as context rules.

• Context rule: A context rule is a context window that satisfies required conditions,
such as the description of a correct vehicle component and the issue with the regarded
component. For this reason, the above sentence is eligible as a context rule. In contrast,
the sentence "there is the word engine inside of this sentence", although it contains a
prescribed keyword and can be suggested as a context window, would not be accepted
as a context rule because it does not describe a problem.

• Class vector: A class vector is a vector representation of the class resulting from the
embeddings of the context rules for the corresponding class.

• Similarity score: A similarity score is a number between -1 and 1 calculated as the
cosine similarity between a class vector and a sentence embedding.

• Minimum threshold: A minimum threshold is a hyperparameter that is defined as the
lowest acceptable similarity score for storing classified documents, which avoids storing
redundant documents with low scores.

• Class threshold: A class threshold is a hyperparameter that is set individually for each
topic and describes a minimum similarity score for a document required to become part
of a particular class.

• Domain expert: A domain expert is a person with special knowledge, skills, or working
experience in a particular area. The person is familiar with a given data set, task, and
requirements. In our definition, we assign this feature to all professional employees of
the cooperating company.

• Voter: A voter, validator, or validation participant is a domain expert involved in the
validation process.

• Validation class: A validation class is one of the classes used in the validation process.

5.2. General Approach

The idea behind our approach is that semantically similar documents are closer in the vector
field. For this reason, we strive to describe the classes as well as possible using the embeddings
of the context rules and consequently obtain the class vectors that hold the so-called "ground
truth" for each class. It gives our model an understanding of the meaning of the target classes
and where to place them in the vector space. A two-dimensional representation of the vector
space for the class "engine" is shown in Figure 5.1. Here, a green label "engine failure" in
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the center of the image embodies the representation of the class vector for the class "engine".
Then we follow our assumption regarding the semantic similarity of documents describing
engine problems. For this reason, we compare each sentence of each document with the class
vector of the engine to obtain the similarity scores. The higher the similarity score, the closer
the documents are to the original class vector. A threshold can be applied to exclude the
documents with low semantic similarity.

Figure 5.1.: Example representation of a semantic feature space around the class Engine,
supplemented by a typical representation of negative sentiment. Grey dashed
circles: Similarity threshold for engine-related issues. Blue: Semantically close
embeddings for engine-related issues. Black: Document sentences containing
these problem descriptions. Red: Outlier document embeddings. Green: Target
class embedding (inspired by Schopf et al. [76])

5.3. General Methodology for Answering Research Questions

The first research question describes a continuous investigation of challenges, trade-offs, and
limitations throughout the algorithm development process. It involves continuous reflection
during each step of data processing, and the answers are intended to form the basis for
further research. This continuous process is illustrated in Figure 5.2. An overview of the
challenges for each step of the second research question is discussed later in the thesis in
chapter 6.
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Figure 5.2.: The continuous reflection process on challenges, trade-offs, and constraints to
answer the first research question.

The first and second research questions are related to each other in that the answer to the
first question comes about through the process of reflection along the way to creating an
algorithm for unsupervised data classification. To answer the second research question, a
methodology consisting of six steps was developed. It starts with a data preprocessing step
in which text cleaning is performed. Next, the target classes for multi-class classification are
defined and each class is described by at least one keyword. Then, the class keywords are
used to extract context windows for each class and obtain the context rules for them through
the evaluation process. Afterward, the context rules are used to obtain the class vectors. After
this step, the classification process of the selected documents starts. Finally, the classification
results are tested in the validation procedure. The methodology is depicted in Figure 5.3

Figure 5.3.: Methodology for unsupervised text classification.
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In the third research question, we investigate whether common unsupervised learning
methods could be useful for any of the data processing steps described above, such as
retrieving keywords for pre-defined classes or detecting new and undiscovered topics that
could be added for classification. We apply a descriptive approach to the results to assess
their significance and uncover potential for future research. The scheme for this process is
given in Figure 5.4.

Figure 5.4.: Methodology for applying unsupervised learning methods to facilitate the pro-
posed approach.

5.4. Data Preprocessing

Data preprocessing is an important part of any data science project. It aims to remove
incorrect, missing, misleading, or unusable data and provide a clear data set for further
processing. The data fed into the model is critical to the quality of the model. In data mining
processes, some data may be missing or contain noise. Bad data fed into the model would
lead to poor results. As the well-known concept of "garbage in garbage out" states, if the
model is fed with poor data, the expected result will also be poor. Since the automotive
complaints used for this thesis were collected from individuals, we expect inconsistencies
of various kinds in the data, such as missing or incorrect data, misspellings, or missing
punctuation.

Several data types may be present in a data set, requiring the application of different
preprocessing techniques. The most common data types include the following: numeric, text,
categorical, ordinal, date and time, and images. Some approaches, such as removing Not a
Number (NaN) values, can be applied universally to all data types, while others are tailored to
a specific data type. In our case, we are investigating written complaints, and for this reason,
we primarily consider text preprocessing techniques.

When choosing the techniques for the text preprocessing, we refer to Danny and Spir-
ling [77] who argued that the choice of the text preprocessing techniques should depend on
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the expectations of what outcome is supposed to be produced. It allows us to choose the
approaches that preserve the text readability required for the evaluation of the context win-
dows and the validation procedure described later. We primarily preprocess text documents
with respect to two features, which are component description (COMPDESC column) and
complaint description (CDESCR column).

First, the general preprocessing steps required for all types of data are completed to bring
the data in a suitable format for further processing:

1. Five data sets containing customer complaints are concatenated.

2. Rows with missing values in either COMPDESC or CDESCR are removed.

3. Rows with empty values in either COMPDESC or CDESCR are removed.

Then, we treat two columns in a different way depending on the information they contain.
For the preprocessing of the component description we select the following steps:

1. Punctuation and special characters ($, %, &, etc.) as well as spaces at the beginning and
at the end of the string are removed [77].

2. The text is brought in a lowercase format [77].

3. The data set-specific noise is removed.

4. Extra white space characters are removed [77].

The code snippet representing the preprocessing steps from above is depicted in Figure 5.5.

1 for i, complaint in result.iteritems():
2 # strip, lower and remove special characters
3 result[i] = re.sub(’[^A-Za-z0-9 :,/]+’, ’’, complaint).strip().lower()
4 # remove data set specific characters at the end of the complaint
5 result[i] = re.sub(r"\W [a-z]{2}$", ’.’, result[i])
6 # remove multiple spaces
7 result[i] = ’ ’.join(result[i].split())

Figure 5.5.: Preprocessing steps for the COMPDESC column.

Then we reduce the number of vehicle components used for classification as target classes.
As a basis for the selection, we use the vehicle components presented in the COMPDESC
column. The documents there are presented hierarchically and comprise several hundred
sub-classes. Our goal is to obtain a reasonable number of classes that covers interesting
vehicle components and is not beyond the scope of this thesis. For this reason, additional
preprocessing steps are introduced:

1. Since the purpose of this thesis is not to study hierarchical classification, we remove an
internal hierarchy down to the root component. In this way, we reduce the complexity
caused by multiple hierarchical dependencies.
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2. We combine classes that have high semantic similarity. For example, the class “tires”
was merged with the class “wheels”.

3. We change the names of some classes to have a title that can be better understood.

4. We remove the classes with less than 1000 documents and reduce the number of classes
to 25.

Then we describe the preprocessing steps for the CDESCR column. We aim to apply rea-
sonable text reprocessing approaches to make the documents understandable for a model and
preserve the readability required for manual evaluation. We apply the following techniques
to our text corpora:

1. Special characters ($, %, &, etc.) are removed [77]. We leave only four punctuation
characters (., !, ?, and ‘), which are useful for semantics and separating sentences.

2. The spaces at the beginning and at the end of the document are eliminated [77].

3. The text is converted into the lowercase format [77].

4. As part of the noise removal [77], the following text elements are removed: website-
like strings, data set-specific characters at the beginning and end of the documents,
references to other complaints, multiple punctuation marks, multiple spaces between
words, and spaces before punctuation marks. We replace the removed words and
character chains with a space to prevent the concatenation of words and then remove
multiple spaces.

These preprocessing stages are represented in Figure 5.6.

1 for i, complaint in result.iteritems():
2 # strip, lower and remove special characters
3 result[i] = re.sub("[^A-Za-z0-9 ’.!?]+", ’ ’, complaint).strip().lower()
4 # remove website-like strings
5 result[i] = re.sub(r"www\S+", " ", result[i])
6 # remove data set specific characters at the beginning of the complaint
7 result[i] = re.sub(r"^tl the|^tlthe", "the", result[i])
8 # remove references to customer complaint number
9 result[i] = re.sub(r"\d{2}\w{6,8}", "", result[i])

10 # remove specific characters at the end of the complaint
11 result[i] = re.sub(r"\W ?[a-z]{2}$", ’.’, result[i])
12 # remove multiple punctuation marks
13 result[i] = re.sub(r"[.!?]{2,}", ’.’, result[i])
14 # remove multiple spaces
15 result[i] = ’ ’.join(result[i].split())
16 # remove spaces in front of punctuation marks
17 result[i] = result[i].replace(’ .’, ’.’).replace(’ !’, ’!’)
18 .replace(’ ?’, ’?’)

Figure 5.6.: Preprocessing steps for the CDESCR column.
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5.5. Definition and Description of Target Classes

The first step in classifying available data is to make a decision about which classes to put the
data into. In our case, the data come from the automotive sector and consist of complaints
submitted by individuals who also selected the vehicle components that are addressed in
their complaint. Our task is to identify representative vehicle components for classification.
Therefore, we use the distribution statistics from the data set containing an estimated number
of documents for each component. However, we use it only as a guide and not as a basis for
validation because we cannot guarantee that the information in the complaint matches the
component choices of the individuals. Therefore, we use the information as a rough estimate
of the number of documents per component that are addressed in the data set.

Originally, several hundred classes are present in the data set. We simplify their distribution
by flattening the class hierarchy and assigning the documents of the child classes to the parent
class. We also remove underrepresented classes with less than 1000 documents. In this way,
we narrow the number of classes to 25 classes. An overview of the target classes used in this
thesis is shown in Figure 5.7.

Figure 5.7.: Target classes used for the classification represented as a word cloud.

Then we describe the classes using keywords. Keywords describe the class from multiple
perspectives and can be represented by synonyms to the class title or by words commonly
used when referring to the class. Initially, we attempted to use the information from the
data set to create class descriptions based solely on the titles of the underlying hierarchically
dependent sub-classes. However, our experiments showed that most of these words are either
too specific or rarely used by the complainants and for these reasons are not suitable for our
goals.

To determine appropriate keywords for each topic, we followed the expert knowledge
extraction procedure described by Haj-Yahia et al. [3]. we take the role of an industry expert
who can describe the class only by its title. The proposed guidelines for creating class
descriptions are presented below:

1. Each class must be described by at least one keyword.

2. We use specific words that have close semantic meaning to the target class, e.g. "engine"
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and "motor", and can be distinguished from semantically related classes such as "parking
brake" and "brakes".

3. We use representative words that are expected to be used in the underlying data set.
We take into account differences such as formal and informal tone, e.g., in our case the
word "light" is expected to be used instead of "illumination".

4. A keyword can contain a single word, e.g. "engine", or a word combination, e.g.
"adjustment rod".

5. Different writing options of the same term can be included, e.g. "adjustment rod" and
"adjusting rod".

6. Keywords do not contain special characters such as hyphens removed in the preprocess-
ing step, e.g. we use "self driving" instead of "self-driving".

7. Some keywords may be separated and may be joined together. For this reason, we often
use both variants, e.g. "powertrain" and "power train".

8. Abbreviations can be used as keywords. For example, "ABS" is more often used than
"anti-lock braking system".

For the description process, industry experts can rely on their work experience and
understanding of the problem. However, various supporting sources of information can be
utilized for the process of creating class descriptions. The following sources are used in our
thesis:

• To begin, we use some related keywords from the hierarchical dependencies of the
underlying data set.

• We then make extensive use of online search engines such as Google to find additional
descriptive keywords by, for example, appending the word "synonym" to the name of
the class or finding similar words in Wikipedia.

• We also rely on visual representations by adding "word cloud" or "description" to
our class name. For example, we use queries like "Word Cloud Engine" and "Engine
Description" on the "Images" tab to explore meaningful components of the engine.

• To expand the list of class keywords, we also randomly select a few documents from
the data set and manually explore the common vocabulary.

Expertise is crucial when identifying appropriate keywords, as dealing with the specifics
of the field and predicting the vocabulary of the target audience require special skills.
Undoubtedly, the quantity and quality of the selected keywords have a significant impact
on the results of the next steps. When domain experts are involved in the process of the
class description, they can describe each class in a short time by using their expertise about
the domain and the data set and selecting mainly specific and representative keywords
and reducing the number of rare and redundant ones. An example of classes and applied
keywords is given in Table 5.1.
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Table 5.1.: An example of classes and corresponding keywords.

Class Keywords

Airbag airbag, air bag, knee bolster, inflator, clock spring, srs
Engine engine, ignition, screen filter, pressure sensor, generator
Seats seat, carseat, headrest, slide adjuster, adjuster rod, cushion
Tires tire, wheel, tread wear, flat spot
Traction control traction, stabilitrak, vsc light

5.6. Obtaining Context Rules from Context Windows

In this step, we use the preprocessed data from section 5.4 and produced class descriptions
from section 5.5. Similarly to Liu et al. [4], we use identified keywords to extract context
windows for each class. Context windows are identified based on the selected keywords and
represent a span of text with one or multiple keywords in it. They can have variable lengths
based on either the number of tokens or the number of sentences. Therefore, we experiment
with two approaches for extracting the context windows, token-wise and sentence-wise.
Token-wise means that the identified keyword in the document is set as the center and
additional tokens are taken to the left and right of it. We test different lengths of fixed-size
context windows with 5 to 15 tokens to the left and right of the identified keyword. In this case,
we encounter the problem that many context windows contain a truncated representation
of sentences containing a few last words of one sentence and a few initial words of another
sentence. This makes the context windows ambiguous and difficult to interpret for human
evaluation, which is required in the next phase. The sentence-wise extraction used in this
thesis assumes that the context can be described in a single sentence of a document. Once the
keyword is identified in the document, the surrounding sentence enclosed by punctuation
marks is used as the context window. The intuition behind using the sentence-wise approach
is that taking into account the linguistic peculiarities of how we humans convey our thoughts
in a text format, a sentence contains at least one statement and is complete in itself. For this
reason, it is much easier for a human reader to understand and interpret.

The procedure for extracting context windows is described as follows: First, duplicate
complaints are removed for each class and its keywords. Then, all complaints in the data set
are shuffled to diversify the source of context windows. Next, a spaCy tokenizer is applied to
each document. In the next step, a spaCy matcher is initialized to find matches between the
class keywords and the lemmatized version of the document tokens. When a match is found,
the sentence containing the matching keyword is identified. This sentence is then added to
the list of context windows for the representative class. If multiple matches exist in the same
document, only the first match is counted as a context window to diversify the provenance of
the data. We also limit the length of the context window to 100 tokens to exclude particularly
long sentences. The process then continues until 50 context windows are identified for the
class. These are then saved as a ".csv" document along with the full complaint text, matching
keyword, and class name, and the extraction process for the next class begins.
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1 for class_name, class_keywords in dict_of_classes.items():
2 # remove duplicates and shuffle complaints
3 shuffled_complaints = df.drop_duplicates(’CDESCR’).sample(frac=1)
4 # create spacy matcher
5 matcher = create_spacy_matcher()
6 for i, doc in shuffled_complaints[’CDESCR’].iteritems():
7 tokenize_document()
8 find_keyword_matches()
9 identify_sentence_of_match()

10 extract_the_sentence()
11 append_to_the_list()

Figure 5.8.: Pseudo code for the context windows extraction procedure.

In the following step, the context windows are evaluated by an expert with domain
knowledge. Again, we assume the role of domain experts to perform the evaluation. To be
considered a context rule, a context window must satisfy task-specific conditions. In our
case, it must both contain information about a vehicle component and describe a problem
related to that component. The evaluation process consists of thoroughly reading through
the extracted context windows and deciding whether a sentence qualifies as a context rule or
not. Two previously established criteria are used for the evaluation. In the positive case, the
context window is marked with a dummy 1; if it does not meet at least one of the criteria, it
receives a dummy 0. Examples of the evaluated context windows for the "engine" class are
presented in Table 5.2.

Table 5.2.: Examples for the evaluation of context windows for the "engine" class.

Context window Evaluation

while driving at any speed the engine will stall without a
prior warning.

1

vehicle experienced a fire in the engine. 1
purchased car july ’09 with 64000 on engine. 0
we have 17k on this engine and all components are suppos-
edly on a full and extended warranty.

0

dealer replaced relay by the radiator and the computer power
train module but the problems remain.

1

5.7. Calculating Class Vectors

Now we have context rules for each of the 25 classes and can calculate the class vectors.
The number of context rules varies for each class because we extract a fixed number of
context windows, but in the evaluation procedure, many context windows are sorted out.
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After evaluation, we get between 2 and 431 context rules for our classes. These context
rules are further used to obtain the class vectors. The class vector embodies the task-specific
representation of a target class in the vector field. In our case, it has the properties of both a
component description and a related issue.

The process of calculating the class vectors starts with reading the files containing the
evaluated context windows. Then a pre-trained model is applied to obtain the embeddings of
the context rules. These embeddings are then used to compute the class vectors. The class
vectors are finally saved as individual files in ".npy" format. This process is explained in more
detail below.

In this thesis, we investigate three pre-trained models for text embeddings. Two of them
consider context and are based on SBERT [38], and the third model is a non-contextual
tok2vec model by spaCy2, which is used as a benchmark. The SBERT models we use are
all-MiniLM-L6-v2 and all-distilroberta-v1, which are commonly employed for cosine similarity
tasks. Both models are state-of-the-art in text embedding but differ in size and processing
speed. The comparison of the models used is presented in Table 5.3. A complete list of
available pre-trained models, including their properties and explanations, can be found on
the SBERT website3.

Table 5.3.: Comparison of used pre-trained SBERT-based models.

Characteristics all-MiniLM-L6-v2 all-distilroberta-v1

Performance Sentence Embeddings
(14 Datasets)

68.06 68.73

Speed 14200 4000
Max Sequence Length 256 512
Dimensions 384 768
Size 80 MB 290 MB
Huggingface downloads in October
2022

2,073,697 89,538

The method of obtaining the class vectors is further explained. We apply one of the
pre-trained models to the context rules to obtain their embeddings. The class vectors are then
calculated as the average vector of their context rules. This approach is called mean pooling
or average pooling and is widely used by many NLP researchers [37, 38, 78]. A code snippet
depicting this step is shown in Figure 5.9.

1The class "electrical system" received 58 context rules because it was used for experimental purposes and the
rules came from several tests.

2https://spacy.io/api/tok2vec
3https://www.sbert.net/docs/pretrained_models.html
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1 for context_rules_df in context_rules_dfs:
2 df = context_rules_df[[’evaluation’, ’cw_embedding’]]
3 class_vector = 0
4 for i, val, vector in df.itertuples():
5 if val == 1:
6 class_vector += vector
7 number_of_context_rules = len(df[’evaluation’])
8 class_vector = class_vector/number_of_context_rules

Figure 5.9.: A code snippet for the calculation of class vectors using the average pooling
approach.

5.8. Classification of Documents

The document classification procedure proposed in our approach is similar to the way people
classify documents by assigning words from documents to similar concepts gained through
experience and reflection on the lexical and semantic meaning of words and phrases in
different situations [3]. The intuition behind the process of bringing together the embeddings
of the document sentences and class vectors is presented in Figure 5.10. In short, the complaint
classification process comes down to comparing each of the class vectors to each sentence of
each document and measuring similarity scores for each pair of vectors.

Figure 5.10.: The intuition behind the proposed approach is to explain the target class features
to the model and then determine the semantic similarity between the sentence
embedding and the class vector by computing their cosine similarity. Inspired
by [3].
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For classification, 100,000 unique documents are randomly selected from the data set. The
reason for this decision is to obtain a representative number of documents while keeping
the processing time within reasonable limits. Then, all 25 class vectors are loaded into a
matrix and a sentence transformer model is initialized. The classification process begins
by tokenizing a document using the spaCy tokenizer. Then, the document is divided into
sentences and a sentence embedding model is applied. Then, a similarity score is determined
for each sentence of each document by computing the cosine similarity between the sentence
embedding and the class vector. We do not store all the classified results, as this is not space
efficient. If we assume that a document consists of three sentences on average, we have
25 classes and 100000 documents, 3 ∗ 25 ∗ 100, 000 = 7, 500, 000 entries need to be stored.
However, many of these entries contain low or even negative similarity scores, indicating
an admittedly low relationship to the class vector. For this reason, we store only those
documents whose threshold is above 0.5 to avoid redundant entries. Classified documents
with a similarity above the defined threshold are then appended to the list of tuples, which
is converted into a Pandas DataFrame at the end of the process and saved as a ’.csv’ file.
The following data is stored: a complaint index, a complaint text, a document sentence, a
class index, and the similarity. The complaint index is represented as a unique complaint
identifier required to identify the document in the original data set. The full complaint text is
stored in the "complaint" column. The document sentence representing the class is stored in
the "text_span" column. The "class_index" column contains the coding of the target classes
and is represented as integers between 0 and 24. The similarities themselves are stored in
the "similarity" column. If a document does not contain classified records, it is assigned the
class index 9999. The unclassified documents are stored together with the classified data. A
simplified version of the classification algorithm is shown as a pseudo-code in Figure 5.11.

1 data = []
2 for document in documents:
3 for sentence in document:
4 find_cosine_similarity_between_sentence_and_each_class_vector(
5 sentence,
6 class_vectors
7 )
8 data.append((complaint, sentence, class_index, cos_similarity))
9 # save data as a pandas DataFrame

10 pd.DataFrame(data).to_csv()

Figure 5.11.: A pseudo-code describing the procedure for classifying complaints.

5.9. Validation Procedure

In order to obtain measurable results and provide a quantifiable and comparable overview,
the validation step was introduced. It is worth mentioning that the data annotated by vehicle
owners are only used to obtain a distribution of vehicle components and are not considered
as "ground truth", since the completion of the accident report may take place under stressful
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conditions and the choice of labeling is therefore prone to errors. The validation process with
domain experts was necessary to evaluate the performance of the proposed approach, to
estimate the requirements for validation including the time required, and to obtain a complete
picture of the process in order to propose further research steps, which are described in
chapter 7.

In our thesis, the validation consists of four rounds in which the classification results of
three different embedding models are given out to voters with experience in the automotive
industry. We select a subset of classes for validation to balance the representativeness of the
results and the scope of this thesis. We report validation results for five classes selected based
on the following criteria:

• The meaning of the class must be easy to understand or even self-explanatory, even for
people without extensive industry experience, since we want to reduce bias regarding
the required expertise in the field and primarily assess how well the proposed algorithm
performs in the first phase. Four out of five classes are selected according to this
principle. However, the "Traction Control System" class was considered to require more
expertise, and the results of this class were assigned only to non-student employees.

• We choose classes with a representative number of context rules, over 15 in our experi-
ments, to obtain a well-described and diversified class vector.

• The classes are taken from the different sides of the topic distribution data set used
for classification to investigate whether the proposed algorithm can well identify the
documents with the expected high and a low number of documents.

• We also want to investigate the importance of specific and representative class descrip-
tions. For example, the class "Seats" was selected for validation because it has a high
semantic similarity to the classes "Child Seat" and "Seat Belt".

The selected classes, their definitions provided to the voters during validation, the number
of context rules used for the class vector, and the distribution rank based on the expected
number of documents in the original subset are presented in Table 5.4.

An important hyperparameter for determining thresholds for meaningful results was the
similarity score. Given a unique combination of NLP methods applied to a particular domain,
no prescribed similarity score for our task was found in the scientific literature to separate
classified documents from those with low similarity to the class vector. Our solution was
to experimentally determine the balance between the similarity score and the number of
documents. In our thesis, two similarity score thresholds of 0.6 and 0.7 were selected for
validation.

Further, the process of inviting industry experts to participate in the validation procedure
is presented, as this was an important part of this thesis. The cooperating company provided
a solid basis for access to people with expertise in the automotive sector. We mainly use a
combination of convenience sampling [79] and snowball sampling [80] to find the participants.
The author of this thesis attended two company social networking events in Frankfurt and
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Table 5.4.: Selected classes for the validation procedure, their class descriptions for the voters,
the number of context rules for each class, and their position in the distribution
of a total of 26 classes, including unclassified documents, based on the number of
documents in the corresponding class.

Class
name

Class description given to the voters Number
of con-
text
rules

Position
in distri-
bution

Airbag The "Airbag" class comprises issues regarding the
airbag system, its functioning, deployment, and cor-
responding system warnings.

43 5-th

Engine The "Engine" class describes complaints that affect
the vehicle engine and its components, such as, but
not limited to, the engine cylinder, starter, alterna-
tor, drive belt, and connecting rod. It also includes
relevant system warnings.

33 1-st

Seats The "Seats" class includes customer complaints and
problems with the functionality of driver and passen-
ger seats, including relevant system warnings. It does
not include problems with seat belts or child seats.

19 17-th

Tires The "Tires" class includes problems with vehicle tires,
wheels, and rims, e.g. malfunctions, a worn wheel,
or corresponding system warnings.

23 8-th

Traction
control

The traction control system is designed to prevent
wheel spin from causing loss of traction. This class
covers complaints and problems related to the opera-
tion of a vehicle’s traction control system, including
related system warnings.

39 24-th
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Ludwigsburg to establish face-to-face contact with colleagues. Participation in social formats
such as speed dating allowed for initial contact with many colleagues. Communication with
colleagues often took place in a friendly and relaxed environment and encouraged casual
conversation about various topics such as work experience and current projects. LinkedIn
profiles were shared to better memorize the person. The initial conversations with colleagues
were helpful in getting to know teammates interested in Data Science and NLP-related
conversations. In this way, the network quickly expanded, and during the aforementioned
events, approximately 40 contacts were made with colleagues ranging from student to partner
level. Additionally, an internal communication tool, Microsoft Teams, was used to make
connections with other colleagues interested in data-related topics. Some relevant contacts
were also made through networking at the company office in Munich.

When the algorithm was finalized and the data were prepared for validation, colleagues
were contacted to ask for their help with this process. Since the company’s employees are
located in different cities, communication took place mainly through Microsoft Teams and
email and was handled as follows:

1. Initial contact: The first message was sent via Microsoft Teams and included a personal
reference to a shared experience during one of the social network events and a question
asking if a person had time to participate in a 15-minute validation process. A brief
description of the task was given.

2. Assignment: In case of a positive response, an email was sent with materials for the
validation. It included a project and task description, introduced a vehicle component,
and explained the validation requirements. One week was given to complete the
validation.

3. Reminder: Two days before the deadline, a short friendly reminder to complete the
validation questionnaire was sent via Microsoft Teams.

Information about the voters, their role in the company, response history, and deadlines
was continuously updated in a dedicated Excel document. The results for each class of each
embedding model were validated by three voters. This number of validators was intended to
provide an optimal balance between the reliability of the results and the potentially reachable
experts in the given time period. In our setting, 16 different samples were created for
validation, requiring 48 experts to participate. We allowed the same person to participate in
multiple rounds of validation. During the period of this study, 53 employees were invited
to complete the questionnaire, 44 of whom participated. Thus, we can report an admittedly
high response rate of 83%. The number of participants according to their role in the company
is shown in Table 5.5.

The rounds of validation are described further. In general, results for the five previously
mentioned classes were given to the voters, and each of them received a document containing
100 classified sentences with the task of reading each of the sentences and judging whether
it belongs to the target class by giving it a 1 or otherwise assigning it a 0. We divide this
procedure into six steps. In the first step, the raw complaints for each of the validation classes
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Table 5.5.: Participants in the validation procedure by the company role.

Role in the company Number

Student 9
Junior Consultant 10
Consultant 24
Senior Consultant 1
Grand Total 44

are extracted and saved as a ".csv" file. Then, the same number of complaints classified in
other classes are extracted and added to the validation class complaints. A column containing
either 1 or 0 is included to distinguish them. The complaints are then shuffled to be presented
to voters in a random order. Excel documents are then created containing a column with
the complaints and a blank column for the voters. These Excel documents are then sent to
the validation participants, and the results are stored in such a way that the responses of
the different participants can be distinguished. Finally, the responses are aggregated and
prepared for assessment. An overview of the validation layers is given in Figure 5.12.

Figure 5.12.: Six layers of preparing the documents for validation.

A single embedding model was used in the first, second, and fourth validation rounds,
and 50 predicted complaints and 50 complaints assigned to other classes were selected for
each class. The falsely predicted complaints are not selected completely randomly from
the data set. Instead, for each of the validation classes, their class vector is compared to
other class vectors, and three classes with the greatest similarity are identified. Then, 50
complaints are randomly extracted from these classes and added to the predicted complaints,
and shuffled. The idea behind this decision was to increase the difficulty of the validation
by providing semantically related examples from other classes. The third validation round
is a special case as it tests two embedding models in parallel. The idea was to investigate
whether representative and interpretable results could be obtained with fewer documents
for validation. In this case, voters were again given the 100-sentence files, but only 25 true
and 25 false documents were selected for each model. For the fourth round of validation, we
take the documents marked as "unclassified" from the data set to evaluate our approach with
completely unknown data, as is the case in practice. For this last round, we report the results
for one class. A summary of the validation procedure can be found in Table 5.6.

The validation outcomes are then aggregated in the assessment step according to the
majority voting principle [81] to obtain the results that are considered true. In our case, the
decision made by two validators for each sentence is considered to be true. These results are
then used in combination with the results of the algorithm to produce classification reports. A
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Table 5.6.: Overview of the validation procedure.

Criteria Round 1 Round 2 Round 3 Round 4

Model name all-MiniLM-
L6-v2

all-MiniLM-L6-
v2

all-
distilroberta-
v1 and
tok2vec

all-MiniLM-
L6-v2

Number of docu-
ments for classifi-
cation

100,000 100,000 100,000 75,445

Number of classes
for validation

5 5 5 1

Number of voters
per class

3 3 3 3

Total number of
voters

15 15 15 3

Similarity score
threshold

0.7 0.6 0.7 0.7

Number of pre-
dicted complaints
per class

50 50 25 50

Number of false
complaints per
class

50 50 25 50

Total number of
complaints per
voter

100 100 100 100
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Fleiss’ Kappa [82] value is also provided for each of the classes, indicating inter-rater reliability
and assessing the reliability of agreement between voters. These results are presented in
section 6.4

5.10. Application of Unsupervised Methods

In this thesis, we test the application of common unsupervised learning approaches to
solve the underlying task. We consider the results from two perspectives. First, we want
to investigate whether unsupervised learning methods are able to identify specific classes
without the assistance of domain experts. Second, assuming that domain experts are available,
we want to evaluate whether the results can facilitate any of the manual steps performed by
domain experts for the proposed approach. For this purpose, we use k-means clustering [71]
with 25 clusters and topic modeling using LDA [74] with 25 topics referring to the same
number of target classes as defined for our task. Both approaches are applied to the same
subset of 100,000 documents used for classification.

In the first case, we have unlabeled documents and the task of classifying them based on
vehicle component names. The expertise is not available, which gives us the opportunity to
evaluate whether the underlying task can be solved using unsupervised learning methods only,
which is a reasonable decision considering no other options to address the underlying task.
In this way, we can get a good initial assessment of the available topics. However, the industry
perspective requires classification into specific topics, and specificity is not guaranteed by
unsupervised learning methods. Our approach aims to bridge this gap by building on the
experience of industry professionals who not only know the class requirements, but can also
describe them through class titles.

In the second case, we have the same task and an expert who can define the classification
topics and is eager to use the approach we propose. It includes three phases where the manual
involvement of the expert is required. These phases are the creation of class descriptions, the
evaluation of context windows, and the validation of the results. We assess the outcomes
with respect to each of these phases to see if the manual effort can be reduced with help of
unsupervised learning methods.

The results of using unsupervised learning methods are described in section 6.8.
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This chapter highlights the results of this thesis by answering the research questions. We
start by describing the main components of the developed algorithm for obtaining training
data for text classification. Then, we present the identified challenges throughout the pipeline
involving the proposed approach. We then present the results of each of the processing
steps. The validation results for each of the four validation rounds are further described in
detail. Afterward, a summary of the results is given and the comparison of the time required
between the common manual annotation and our approach is presented. Following this, a
proposed validation process in practice is described. Finally, we also present the application
results of the unsupervised learning methods.

6.1. Developed Algorithm

In this section, we present the developed algorithm for obtaining training data using the
combination of expert knowledge and various NLP techniques. The algorithm can be accessed
on the GitHub of the author of this thesis.1

The files of the created algorithm are further introduced:

• main.py initializes the algorithm.

• component_dict.py contains class dictionaries.

• preprocessing.py is used to concatenate the output data and get preprocessed data.

• reading_preprocessed.py reads the preprocessed data.

• context_windows.py is used to extract context windows for each class.

• class_vectors.py creates class vectors for each class from the corresponding context rules
and saves them as ".npy" files.

• embedding.py contains the classification algorithm that uses class vectors and document
corpora for classification.

• validation.py is used to extract true and false complaints for validation classes.

• visualization_results.ipynb is a Jupyter Notebook containing visualizations of the valida-
tion results.

1https://github.com/andreikreinhaus/master_thesis
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• unsupervised.ipynb is a Jupyter notebook containing the results of applying unsupervised
learning methods to the data set.

We also present the folders stored in the working directory and the files they contain:

• The class_vectors folder contains calculated class vectors for tested models. For each
model, vectors are calculated for 25 classes of pre-defined vehicle components. The
calculation of each class vector is done by averaging the embeddings of the context rules
of each class. The number of context rules used is specified for each class vector.

• The context_windows The folder contains extracted and evaluated context windows. For
each class, context windows containing a keyword from the component dictionary and
surrounded by a context from a complaint are evaluated manually. The list of used
keywords is given in component_dict.py

• The nhtsa_complaints folder contains the raw data of NHTSA complaints received from
1995 to 2022. The complaints are open source and can be downloaded from the NHTSA
website.2

• The preprocessed folder contains NHTSA complaints after an initial preprocessing. The
preprocessing algorithm is given in preprocessing.py

• The similar_text_spans folder contains the product of the classification algorithm for each
of the models used. The similarity score for each sentence of each complaint is given.

• The validation folder contains information about all validation rounds and stores the
questionnaires used, the voters’ answers, and the aggregated assessment data.

6.2. Challenges

Following the order of the research questions, we start the description of our findings by
presenting the challenges encountered during the development of the proposed algorithm.
The identified challenges are associated with the respective methodology steps and are
presented in Table 6.1 These insights are intended to form the basis for further research. A
full description of each challenge can be found below in section 7.2.

Title Challenge Processing step

C1 Selecting preprocessing techniques and apply-
ing them in a sequence that ensures time effi-
ciency

Data preprocessing

C2 Maintaining readability Data preprocessing
C3 Choosing the number of target classes Definition and description

of target classes
2https://www.nhtsa.gov/nhtsa-datasets-and-apis
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C4 Defining an optimal number of keywords per
class

Definition and description
of target classes

C5 Picking precise keywords for the class descrip-
tions

Definition and description
of target classes

C6 Creating hierarchical dependencies between
classes

Definition and description
of target classes

C7 Adding new classes or changing the definitions
of target classes

Definition and description
of target classes

C8 Being familiar with the language style and
words used in the data set

Definition and description
of target classes

C9 Using acronyms as keywords Definition and description
of target classes

C10 Searching for context windows word-wise if
not enough context windows are found

Obtaining Context Rules
from Context Windows

C11 Choosing the length and representation of con-
text windows

Obtaining Context Rules
from Context Windows

C12 Ambiguous meaning of context windows Obtaining Context Rules
from Context Windows

C13 Determining the optimal number of context
rules to describe the class

Obtaining Context Rules
from Context Windows

C14 Evaluating the results in terms of the ratio be-
tween the words used in a class dictionary and
the number of keywords actually used for con-
text rules

Obtaining Context Rules
from Context Windows

C15 Reducing time for a manual evaluation of con-
text windows

Obtaining Context Rules
from Context Windows

C16 Exploring alternative methods for obtaining
context rules

Obtaining Context Rules
from Context Windows

C17 Selecting a pre-trained model for obtaining text
embeddings

Calculating class vectors

C18 Exploring the possibilities of training a tailored
model

Calculating class vectors

C19 Deciding on the method for calculating the
class vectors using context rules

Calculating class vectors

C20 High similarities between class vectors Calculating class vectors
C21 Exploring other approaches beyond computing

the class vector
Calculating class vectors

C22 Selecting the approach to classify documents Classification of documents
C23 Using time-saving code writing techniques for

the algorithm
Classification of documents

C24 Determining a minimum threshold for saving
classified documents

Classification of documents
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C25 Adjusting a class threshold for each individual
class

Classification of documents

C26 Exploring additional features of the data set to
enhance the classification

Classification of documents

C27 Identifying multiple topics in a document Classification of documents
C28 Examining false statements Validation procedure
C29 Establishing the number of statements required

for validation
Validation procedure

C30 Determining reasonable metrics for the valida-
tion sample

Validation procedure

C31 Improving the validation procedure Validation procedure
C32 Exploring portability of results to other tasks General
C33 Reducing labor time required for the suggested

approach
General

C34 Training a text classifier General
C35 Improving the model over time General

Table 6.1.: Overview of the challenges along the classification process using suggested ap-
proach.

6.3. Classification Results

In this section, general results for individual steps of the proposed algorithm are presented.
At the beginning of the classification process, class descriptions are created with a varying

number of keywords. Only a subset of these keywords later appear in context windows and
further in context rules, which means that some keywords from the class description are
not utilized for the class vectors. This demonstrates that a small number of keywords can
be sufficient to describe the class. The comparison between the number of keywords used
to describe the validation classes and the number and frequency of keywords used in the
context rules are shown in Table 6.2. From this table, we can see that although 18 keywords
can be used for the class description, as in the case of the class "engine", only four keywords
appear in the final context rules. We also see that for our validation classes, between two and
five keywords end up being used for the context rules and the corresponding class vectors.

In one of the following steps, we convert the obtained context rules into 25 class vectors.
We want to make sure that these class vectors describe different topics. For this purpose,
we compute the cosine similarities between all 25 classes. The similarities between the class
vectors are represented in the form of a heatmap and shown in Figure 6.1. The absence of red
squares or hot spots indicates that the class vectors do not have high similarity to each other
and describe different subjects.

In the next step, we perform the classification and report the number of classified documents
with respect to two SBERT-based embedding models, two similarity score thresholds, and
five validation classes. We find that small changes in the similarity score thresholds lead to

51



6. Results

Table 6.2.: Statistics on the keywords used for the context rules of validation classes.

Class Number of key-
words in a class de-
scription

Keywords appearing in con-
text rules

Respective number of
context rules contain-
ing the keyword

Airbag 7 airbag, airbags, inflator, in-
flators, srs

25, 12, 1, 1, 4

Engine 18 alternator, engine, ignition,
radiator

1, 25, 3, 4

Seats 7 seat, seats 17, 2
Tires 4 tire, tires, wheel, wheels 7, 7, 6, 3
Traction
control

3 stabilitrak, traction 6, 33

(a) Class similarities heatmap for all-MiniLM-L6-v2. (b) Class similarities heatmap for all-distilroberta-v1.

Figure 6.1.: Heatmap of class vector similarities for two SBERT-based embedding models
used for result validation. Low similarity indicates that the class vectors describe
different topics, while high similarity scores may represent the same concept. In
the latter case, the class vectors may unintentionally describe the same subject,
and it is recommended to reformulate their context rules. The absence of red cells
in both figures, except for the comparison with the same class vector, shows that
each class vector describes a separate topic.
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(a) Model: all-MiniLM-L6-v2. (b) Model: all-distilroberta-v1.

Figure 6.2.: The number of classified documents from the sample of 100,000 documents by
model and similarity score threshold.

significant changes in the document counts. For example, using the all-MiniLM-L6-v2 model
and a threshold of 0.7 results in 2042 documents for the "airbag" class and 405 documents for
the "engine" class. Lowering the threshold by 0.1 to 0.6 increases the number of documents
to 7347 for the "airbag" class and 6256 for the "engine" class. The same principle applies to
the all-distilroberta-v1 model. A complete overview of the number of documents identified by
each model for each class can be found in Figure 6.2.

Our approach allows specifying not only the number of identified documents for each
class but also the number of classified sentences since we compute similarity scores for each
sentence of each document. This means that multiple sentences of the same document can
have a high class threshold and be recognized as part of the same class. While the classified
documents are the final product of the classification, the sentences themselves can be used
in a further step to train the text classifier. We observe significant differences between the
number of sentences and the number of classes for each model and threshold. For example,
using the model all-MiniLM-L6-v2 and the threshold of 0.6, the number of sentences for the
class "tires" is almost twice the number of documents. The corresponding results are shown
in Figure 6.3.

Since we have a rough estimate of the classified documents from the data set, we also want
to compare the obtained number of classified documents with the numbers from the data
set. For the model all-MiniLM-L6-v2 with the class threshold of 0.6, we see that the obtained
number of documents for the classes "airbag" and "tires" is very close to the baseline. This is
also the case for the class "airbag" obtained with the model all-distilroberta-v1. Another case
that occurs frequently is that the estimated number of documents is between the threshold
of 0.6 and 0.7. This is the case, for example, for the class "seats" in all-MiniLM-L6-v2 or the
classes "engine" and "tires" in all-distilroberta-v1. The third case is that the estimated number
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Figure 6.3.: Comparison of the number of sentences and documents obtained by two SBERT-
based models for two thresholds.
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(a) Model: all-MiniLM-L6-v2. (b) Model: all-distilroberta-v1.

Figure 6.4.: The number of classified documents from the sample of 100,000 documents by
model and similarity score threshold in comparison to the baseline.

of documents is much closer to the threshold of 0.7 than to 0.6. This is the case for the class
"seats" with all-distilroberta-v1. The results with the number of classified documents for each
class as a function of the class threshold are shown in Figure 6.4.

These considerations lead us to the idea that the proposed approach can be used for
unsupervised classification without subsequent training of the text classifier. For this purpose,
the calibration of the class threshold must be performed depending on the class and the
embedding model used.

6.4. Validation Results

The validation process was performed on already classified 100,000 documents using the
proposed approach and five validation classes representing vehicle components, which are
"airbag", "engine", "seats", "tires", and "traction control". Each questionnaire contained 100
statements for each class, with half of the statements being true and the other half being
false. Since each class was rated by three voters on a majority vote basis, the value of
agreement among the voters, represented by Fleiss’ Kappa, is given for all classes. Fleiss’
Kappa values closer to 1 indicate high agreement among voters. In contrast, low or even
negative values suggest disagreement between raters [83]. It is worth pointing out that no
universal interpretation of Fleiss’ Kappa exists and that it always depends on the number of
voters and the underlying classes. We present the results in the form of classification reports
for each validation class and embedding model and report the values for three metrics, which
are precision, recall, and F1-score.
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We select validation classes based on how easily their meaning can be understood and
how similar they are semantically to other classes. The classes "airbag", "engine" and "tires"
have self-explanatory titles and can be easily distinguished from other predefined classes. In
contrast, the class "Seats" has a high semantic similarity to two target classes, which are "child
seat" and "seat belt", making it more difficult to distinguish. The fifth class, "traction control,"
requires voters to have more experience in the domain to understand it. Our results suggest
that self-explanatory classes with high semantic distinction from other classes achieve better
classification results and higher voter agreement.

Four classification runs were required to validate the results. All computations were
performed on a single laptop with 16 GB RAM and the Intel(R) Core(TM) i7-1065G7 processor
with four cores, eight threads, a base frequency of 1.30 GHz, and a maximum turbo frequency
of 3.90 GHz. We provide the time needed for the classification in Table 6.3.

Table 6.3.: Processing time required for the classification using the proposed approach.

Model Number of documents Processing time

all-MiniLM-L6-v2 100,000 9.1 hours
all-distilroberta-v1 100,000 13.4 hours
tok2vec 100,000 2.1 hours
all-MiniLM-L6-v2 75,445 7.2 hours

6.4.1. Validation Round 1

In the first round of validation, we use the SBERT-based all-MiniLM-L6-v2 model and set the
similarity score threshold to 0.7 for all validation classes. For validation, 50 true and 50 false
statements are used for each class.

For the "airbag" class, 2042 documents are identified, and this class has the highest F1-
scores of 0.93 for both true and false statements. These values are supported by a high
Fleiss’ Kappa of 0.83. The "engine" class of 405 documents also has high metrics for true
and false statements, achieving F1 scores of 0.91 and 0.89, respectively. Although the results
for the "seats" class are high enough, with 518 documents, they are the lowest in this round
of validation. It achieves F1-scores of 0.76 and 0.83 for true and false predicted sentences,
respectively, and a high Fleiss’ Kappa score of 0.82. One of the reasons for this is that, as
expected, the semantic similarity to two of the predefined classes makes it difficult for the
validators to draw the line between these classes. Then, we also get solid results for the "tires"
class with F1-scores of 0.88 and 0.9 for true and false statements, a high agreement rate of 0.82,
and 1143 documents. The last class, "traction control", receives 367 documents and achieves
impressive F1 values of 0.92 and 0.9 for the true and false documents and a moderate Fleiss’
Kappa of 0.59.

The statistics on the number of classified documents can be found in Figure 6.2 and the
results of the classification report in Figure 6.5.
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Overall, the metrics of the classification reports, along with the Fleiss’ Kappa values, suggest
high-quality results for all classes in this round.

6.4.2. Validation Round 2

The second round was performed with the same classification results of the model all-MiniLM-
L6-v2 as in the first round. Again, 50 true and 50 sentences are used for each class. In this
round, the similarity score threshold was lowered to 0.6, allowing more documents to be
included in the validation classes.

The "airbag" class with its 7347 identified documents delivers strong results with its F1-
score of 0.91 for both true and false data, and a significant inter-rater agreement of 0.79. For
the "engine" class, 6256 documents are identified. Although the validation results for this
class show substantial F1-scores of 0.7 and 0.67 for the true and false sentences, respectively,
these results have weak support from Fleiss’ Kappa of 0.21. At this point, it should be
mentioned that the validation approach used in this work is sensitive to the assessments of
the individual raters. This means that a low agreement between the raters either indicates
irritating results or one or more raters had difficulties in understanding their task in the
validation procedure. Next, the "seats" class obtains 2834 classified documents and moderate
results of the classification report with the F1-scores of 0.59 for true and 0.76 for false data,
and a fair agreement ratio of 0.38. Then, the results for the "tires" class of 5110 documents
are supported by strong F1 scores of 0.89 for true and 0.91 for false sentences. It also has a
substantial agreement rate of 0.63. Finally, the "traction control" class receives 1145 documents.
Although the classification report results are more than convincing, with F1-scores of 0.91 for
both true and false data, the Fleiss’ Kappa results of 0.08 reveal a slight agreement among
voters suggesting that the strong results may have arisen arbitrarily.

The number of documents for each class is given in Figure 6.2, and F1-score statistics and
full classification reports can be found in Figure 6.6.

The results of this round of validation indicate that the "airbag" and "tires" classes received
the documents with high metrics and a supportive rate of agreement among voters. The other
three classes either have unconvincing results or are not supported by Fleiss’ Kappa.

6.4.3. Validation Round 3

In this round, two embedding models are tested in parallel. These models are SBERT-based
all-distilroberta-v1 and tok2vec. For each of the models, 25 true and 25 false statements are
given to voters for validation, so that each voter obtained 100 statements in total as in earlier
rounds. The similarity score threshold is set to 0.7.

We start presenting the results for all-distilroberta-v1 first. For the "airbag" class, 3793
documents are found, and it achieves maximum results reaching F1-scores of 1.0 for both
true and false statements. These results are supported by a substantial inter-rater agreement
score of 0.76. The "engine" class receives 2581 documents and performs well with an F1 score
of 0.86 for both true and false statements. These results are supported by a moderate Fleiss’
Kappa of 0.49. The "seats" class of 1244 identified documents achieves competitive F1-scores
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(a) Class: "airbag", Fleiss’ Kappa: 0.83 (b) Class: "engine"; Fleiss’ Kappa: 0.7

(c) Class: "seats". Fleiss’ Kappa: 0.82 (d) Class: "tires". Fleiss’ Kappa: 0.82

(e) Class: "traction control". Fleiss’ Kappa: 0.59

Figure 6.5.: Classification reports for the first validation round; model used: all-MiniLM-L6-v2.

58



6. Results

(a) Class: "airbag"; Fleiss’ Kappa: 0.79 (b) Class: "engine"; Fleiss’ Kappa: 0.21

(c) Class: "seats"; Fleiss’ Kappa: 0.38 (d) Class: "tires"; Fleiss’ Kappa: 0.63

(e) Class: "traction control"; Fleiss’ Kappa: 0.08

Figure 6.6.: Classification reports for the second validation round; model used: all-MiniLM-
L6-v2.
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of 0.7 for true and 0.8 for false sentences, and a substantial agreement value of 0.7. For the
"tires" class, 2620 documents are determined, and we observe high F1-scores of 0.89 for true
and 0.91 for false statements. A reasonable Fleiss’ Kappa of 0.65 is computed for this class.
The final class, "traction control", receives 439 documents. Although it reveals almost perfect
F1-scores of 0.89 for true and 0.91 for false sentences, its moderate rate of agreement of 0.44
makes the reliability of the results questionable.

The statistics containing the number of identified documents for each class are shown in
Figure 6.2 and the classification reports can be found in Figure 6.7.

Summarizing the validation results for all-distilroberta-v1, we find that the "airbag", "seats",
and "tires" classes have significantly high metrics supported by voter agreement, while the
agreement rate for "engine" and "traction control" have moderate levels of voter uncertainty
and require additional investigation of the results.

As for the validation results for the context-free tok2vec model, we report poor metrics for
each of the validation classes. Both F1-scores and Fleiss’ Kappa values are low for all classes
and can be seen in Figure 6.8. Due to the low performance, the results of this model are not
discussed in detail in this thesis.

6.4.4. Validation Round 4

In the final validation round, we use 75,445 classified documents from the data set that are
marked as "unknown", meaning that they have no associated vehicle component. We use
all-MiniLM-L6-v2 for classification and set the already proven similarity threshold of 0.7. Due
to constraints on the availability of domain experts for this research, we report the validation
results in this round only for the "airbag" class. We identify 769 documents and obtain
high F1-scores of 0.98 for both true and false statements, supported by an almost perfect
inter-reviewer agreement of 0.83.

This experiment was designed to simulate real-world conditions where all documents are
unclassified and no baseline is available. Our results indicate that the proposed approach can
be used in practice for classification tasks of unknown documents to achieve robust results.

6.5. Results Summary

Previously, the results of four rounds of validation were described independently. In this
section, we now compare the metrics obtained with different embedding models for the
validation classes. A first look at the comparison results in Figure 6.10 shows that both
SBERT-based embedding models provide strong results, while the results of the tok2vec model
can be considered insufficient. We note that the results of the fourth round of validation
cannot be directly compared to the other results because a different subset of data was used
for this classification, but we include these results for completeness. In many cases, our
approach shows convincing results, which are supported by the agreement between the
voters. For example, we often see F1 values above 0.8 and even reach the maximum value of
1.0 for the "airbag" class. We also find that at higher similarity thresholds, the metrics are
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(a) Class "airbag"; Fleiss’ Kappa: 0.76 (b) Class: "engine"; Fleiss’ Kappa: 0.49

(c) Class: "seats"; Fleiss’ Kappa: 0.7 (d) Class: "tires"; Fleiss’ Kappa: 0.65

(e) Class: "traction control"; Fleiss’ Kappa: 0.44

Figure 6.7.: Classification reports for the third validation round; model used: all-distilroberta-
v1.
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(a) Class: "airbag"; Fleiss’ Kappa: 0.44 (b) Class: "engine"; Fleiss’ Kappa: 0.24

(c) Class: "seats"; Fleiss’ Kappa: -0.1 (d) Class: "tires"; Fleiss’ Kappa: -0.1

(e) Class: "traction control", Fleiss’ Kappa: 0.11

Figure 6.8.: Classification reports for the third validation round; model used: tok2vec.
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(a) Class: "airbag"; Fleiss’ Kappa: 0.83

Figure 6.9.: Classification report for the fourth validation round; model used: all-MiniLM-L6-
v2.

either greater, as is the case for the "engine" class, or show higher inter-voter agreement, as
shown by the results for the "traction control" class.

To identify the best model for each class, we combine the metrics from the classification
report for true statements with the number of documents identified and present a full
comparison of model outputs in Table 6.4. For the "airbag" class, the best model is all-
distilroberta-v1, which scores highest on all three metrics and identifies the second-highest
number of documents. The results are confirmed by a solid Fleiss’ Kappa score. The best
classification results for the "engine" class are obtained in the first validation round by all-
MiniLM-L6-v2. Although it identifies a comparatively small number of documents, this is the
only round in which the classification report results are supported by substantial agreement
among the raters. Similarly, for the other classes, the best results are obtained in the first
validation round with all-MiniLM-L6-v2 and a similarity threshold above 0.7. For a complete
overview of the results, see Table 6.4.

6.6. Comparison of Time Required for Manual Activities

One of the main motivations for this work was the fact that supervised learning methods used
for classification require annotated data, which is scarce, and that manual label generation is
time-consuming and expensive, especially in an industrial context. Our approach, therefore,
aims to optimize the time spent on manual labor.

We further present the comparison of the time required between a common approach
for obtaining training data through manual annotation and our proposed approach. For
this purpose, we consider the same use case underlying this work, i.e., we have a data set
of customer complaints and a domain expert who wants to classify the complaints into 25
different classes corresponding to vehicle components and containing problem descriptions.
We show the computation of the required time for both cases.
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Table 6.4.: Comparison of model outputs by validation class. The highlighted model has the
best performance for the corresponding class.

Class Validation round:
Model

Identified
documents

Precision Recall F1-score Fleiss’
Kappa

Airbag

1: all-MiniLM-L6-v2 2042 0.9 0.96 0.93 0.83
2: all-MiniLM-L6-v2 7347 0.94 0.89 0.91 0.79
3: all-distilroberta-v1 3793 1.0 1.0 1.0 0.76
3: tok2vec - 0.08 0.5 0.14 0.44
4: all-MiniLM-L6-v2 769 0.98 0.98 0.98 0.83

Engine

1: all-MiniLM-L6-v2 405 0.98 0.84 0.91 0.7
2: all-MiniLM-L6-v2 6256 0.74 0.67 0.7 0.21
3: all-distilroberta-v1 2581 0.88 0.85 0.86 0.49
3: tok2vec - 0.08 1.0 0.15 0.24

Seats

1: all-MiniLM-L6-v2 518 0.64 0.94 0.76 0.82
2: all-MiniLM-L6-v2 2834 0.44 0.92 0.59 0.38
3: all-distilroberta-v1 1244 0.56 0.93 0.7 0.7
3: tok2vec - 0.0 0.0 0.0 -0.1

Tires

1: all-MiniLM-L6-v2 1143 0.78 1.0 0.88 0.82
2: all-MiniLM-L6-v2 5110 0.8 1.0 0.89 0.63
3: all-distilroberta-v1 2620 0.8 1.0 0.98 0.65
3: tok2vec - 0.0 0.0 0.0 -0.1

Traction
control

1: all-MiniLM-L6-v2 367 1.0 0.85 0.92 0.59
2: all-MiniLM-L6-v2 1145 0.86 0.96 0.91 0.08
3: all-distilroberta-v1 439 0.84 0.95 0.89 0.44
3: tok2vec - 0.08 0.67 0.14 0.11
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Figure 6.10.: F1-scores and corresponding values of the Fleiss’ Kappa for each of the validation
classes.

First, we describe the common approach of manual annotation. This method is based
on reading and comprehending the individual complaints and assigning the documents to
predefined classes. We assume that at least 100 documents per class are needed to train
the text classifier [51]. This means that at least 25 ∗ 100 = 2500 annotated documents are
needed for the underlying task. We also know from our data set that the average length
of a complaint is about 100 words, so we assume that each document is that length. Then
we need to know how fast a person can read and understand the text. For our calculations,
we assume an average reading speed of 200 words per minute. This leads us to consider
that the time required to read a single complaint is 100/200 = 0.5 minute or 30 seconds. At
this stage, however, a manual annotator has several problems. First, she must remember all
25 available classes when comprehending the complaint. Second, some complaints contain
multiple topics, and in this case, it may be necessary to divide the document into several
parts to ensure clear separation between topics. Third, a document may not contain any of
the predefined topics and must be skipped. Fourth, complaints are received in a random
order, and a uniform distribution of complaints across topics is unlikely, as is the case in
our data set. These considerations show that extra time is needed to classify the complaints.
For this reason, we assume that an additional 30 seconds are required for each complaint.
Thus, we assume that one minute is needed to obtain each annotated document. This results
in 2500 minutes of work, or over 41 hours, or about one work week, necessary to meet the
minimum requirements for training the classifier.

Now that we have a benchmark for manual annotation, we proceed to describe the time
required for our approach. It involves three steps where manual work is required. First, a
class dictionary must be created that contains the descriptions for each class. Second, the
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extracted context windows for each class must be manually evaluated to create context rules.
Third, the results for each class must be validated. For the first step, our results described in
section 6.4 indicate that two to five keywords may be sufficient to extract relevant context
windows. We assume that it would take a domain expert five minutes to identify enough
descriptive words for each class, resulting in 5 ∗ 25 = 125 minutes. The second step was
performed by the author of this thesis, and the evaluation of 50 context windows presented
as individual sentences required an average of eight minutes for each class. This results in
a total effort of 25 ∗ 8 = 200 minutes for this step. The final step involves validation of the
results, for which 50 sentences are again randomly extracted, adding 25 ∗ 8 = 200 minutes to
the manual time required. In total, our approach requires 125 + 200 + 200 = 525 minutes or
8.75 hours.

Thus, our approach requires 79% less time, reducing the effort from one work week to
about one work day. The visualization of the required time can be found in Figure 6.11.

Figure 6.11.: Manual labor time comparison for creation of training data.

The considerable time saving is not the only result of this comparison. With reference
to the first validation round, we would like to emphasize again the high quality of the
obtained results for all classes, supported by a significant value for the inter-rater agreement.
Comparing the number of documents for each class, we note that we expect 100 documents
for each class in the manual annotation, while our approach yields 20 times more documents
for "airbag", 4 times more for "engine", 5 times more for "seats", 11.5 times more for "tires"
and 3.5 times more documents for the "traction control" class. A larger number of training
documents should improve the process of training the classifier.
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6.7. Validation Procedure in Practice

The proposed approach includes essential manual processing steps described in the previous
section, as well as additional manual steps that include, for example, identification of target
classes and calibration of the class threshold. The latter is described in this section. As
we have shown above, the optimal number of identified documents depends on the class
threshold with respect to the class specifics and the chosen embedding model. This fine-
tuning is done by domain experts. We propose an algorithm for calibrating the similarity
score threshold for each class, presented in Figure 6.12. The algorithm starts with the selection
of an initial similarity threshold. We suggest starting with a lower threshold to get more
classified documents. The next step is to validate a sample above the selected threshold.
Depending on how satisfied one is with the results and the number of documents obtained,
the threshold value should be either increased or decreased. The algorithm also suggests
either training a text classifier or using the model as the final product for unsupervised text
classification, depending on the expectation of the topics covered in the validation sample.
We also consider a case where the threshold cannot be changed significantly without causing
repetition, which implies that the problem should be looked for in other steps, e.g., documents
for the expected class in the data set may be underrepresented.

Figure 6.12.: The validation process in practice by fine-tuning the similarity score threshold
for each class.
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6.8. Topic Modeling and Clustering

This section presents the results of applying common unsupervised learning methods to
the same subset of 100,000 documents used for the classification procedure. We evaluate
the results from two perspectives. First, we assume that no domain expert is available and
the unsupervised learning methods are able to classify the documents into specific classes.
Second, we assume that a domain expert is available who would like to use our approach. We
provide an assessment of whether these unsupervised methods can be helpful in facilitating
manual activities.

For our purposes, we initialize an LDA and k-means clustering with 25 topics or clusters.
For topic modeling, we use 15 keywords for each topic, while each cluster is described with
10 keywords. Then, we read through the results and give titles to the obtained topics or
clusters. We see that the topics lack specificity, often do not reveal the context associated with
the vehicle component problems, and their meaning is ambiguous. Therefore, these results
cannot be used to classify the given documents. Some examples of the topic modeling and
clustering results are given in Table 6.5 and Table 6.5, respectively.

Table 6.5.: Selected topics identified by LDA with assigned titles. The titles are assigned by
the author of this thesis.

Topic number Identified keywords Given title

1 ’warranty’, ’sienna’, ’2009’, ’new’, ’2007’, ’safety’,
’dealer’, ’2010’, ’issue’, ’bike’, ’prius’, ’camry’, ’mo-
torcycle’, ’problem’, ’toyota’

Vehicles

4 ’wire’, ’electrical’, ’552b6’, ’foia’, ’redacted’, ’pur-
suant’, ’freedom’, ’headlight’, ’act’, ’xxx’, ’harness’,
’wiring’, ’switch’, ’information’, ’honda’

Electric compo-
nents

8 ’flat’, ’pressure’, ’right’, ’number’, ’ak’, ’new’,
’replaced’, ’firestone’, ’dot’, ’size’, ’rear’, ’tread’,
’miles’, ’tires’, ’tire’

Tires

15 ’dash’, ’night’, ’comes’, ’time’, ’come’, ’headlights’,
’times’, ’safety’, ’turn’, ’driving’, ’vehicle’, ’problem’,
’light’, ’issue’, ’lights’

Light

20 ’fluid’, ’automatic’, ’problems’, ’failed’, ’dealer’,
’gears’, ’shifting’, ’speed’, ’problem’, ’shift’, ’re-
placed’, ’vehicle’, ’miles’, ’gear’, ’transmission’

Transmission

Since unsupervised learning methods are not able to capture specific topics required for
our task, we can conclude that our approach prevails in this respect since domain expertise is
added to the topic selection process.

Then, we want to evaluate the applicability of the results to facilitate the manual work of the
domain expert that the proposed approach requires. Among the three manual steps, which
are the creation of class descriptions, the evaluation of context windows, and the validation
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Table 6.6.: Selected clusters identified by k-means clustering with assigned titles. The titles
are assigned by the author of this thesis.

Cluster number Identified keywords Given title

2 contact, repair, manufacturer, recall, campaign,
notification, parts, available, reasonable, re-
ceived

Campaign

4 seat, belt, child, driver, belts, buckle, passenger,
broke, safety, retract

Seat belt

8 car, driving, engine, start, problem, light, time,
stop, drive, started

Engine

18 windshield, wipers, wiper, work, motor, inter-
mittently, working, cracked, crack, visibility

Visibility

24 deploy, bags, air, did, vehicle, driver, impact,
airbags, collision, deployed

Airbag

of the results, the results of topic modeling and clustering can be useful only for the first step,
to identify the keywords for class descriptions. For this purpose, we read through the results
and pick out the words that can be used to describe the predefined classes. The combined
representation of the topic modeling and clustering results in terms of the target classes is
given in Table 6.7. From this table, it can be noticed that the unsupervised methods can
identify some relevant keywords for the description of the predefined classes.

We also identify keywords that can be helpful in describing task-specific contexts:

• Automotive context: vehicle, bike, motorcycle, car, driving, traffic, road, gm, dodge,
truck, speed, mph, mileages

• Car manufacturers: vw, kia, honda, nissan, ford

• Daytime: night

• Issue description: noise, warranty, safety, issue, problem, failure, repair, recall, replace,
fix, service, damage, accident, hit, leaking, leak, accident, cracked, rust, rusted, injuries,
warning, broke

We conclude that the results of topic modeling and clustering cannot be used alone to
classify documents into specific classes, but they can serve as a source of inspiration for
creating class descriptions.
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Table 6.7.: Potentially applicable keywords for the predefined classes determined by unsuper-
vised learning methods.

Class Keywords

Electrical system plugs, plug, electrical, wire, wiring, harness,
switch, battery, gauge, sensor

Airbags airbag
Engine cylinder, valve, motor, gasket, coolant, oil, igni-

tion
Power train clutch, transmission, shift, shifting
Steering steering, column, turning, gear
Service brakes braking, brake, brakes, rotor
Fuel/propulsion system fuel, gas, pump
Tires wheel, tire, tires, sidewall, firestone
Suspension suspension, spring
Exterior lighting headlight, headlights, light
Electronic stability control abs
Seats seats
Seat belts buckle, seatbelt, belts
Visibility window, windows, windshield, glass, shat-

tered, wiper, wipers
Latches/locks/linkages latch, locks, lock
Structure door, doors, sunroof, frame
Equipment tank
Child seat child
Parking brake park
Traction control system sliding
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This chapter highlights the limitations of the proposed approach, discusses the identified chal-
lenges in detail and suggests directions for future research, evaluates the use of unsupervised
learning methods, and summarizes the benefits of the proposed method.

7.1. Limitations

In this section, the limitations of our work and the suggested approach are presented:

• Domain expertise is required for the creation of class descriptions, evaluation of context
windows, and validation of the results.

• A reasonable class threshold, which determines the number of documents belonging to
the class, can only be identified experimentally.

• The selection of keywords is influenced by the person’s past experience and therefore
can be biased.

• The identification of documents in which the complaint and the vehicle component are
described in different sentences is limited due to the design of the proposed approach.
The next section suggests ways to overcome this limitation.

• In the validation procedure, we assume that all professional employees of the cooper-
ating company are domain experts, but we cannot guarantee this. For this reason, we
deliberately choose self-explanatory classes for the validation procedure to reduce bias.

• Our approach is intended to be used for topics that can be predicted in advance. In
contrast, it is not supposed to be used for the identification of unknown or new topics.

7.2. Future Work

This section discusses identified challenges during the classification process summarized in
section 6.2.
C1: A deliberate choice of text preprocessing techniques often depends on the content of the
underlying data set, its structure, and its size. To achieve time-efficient results, the techniques
must be applied in a meaningful sequence [77]. We suggest investigating the application of
common preprocessing approaches:
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• Stop word removal is a common text processing technique to eliminate the words that
are unlikely to convey much information [77, 84]. They include articles such as "a" and
"the", function words such as "and" and "he", and domain-specific words. Numerous
stop word removal lists and algorithms exist [85]. Using the list of stop words provided
by NLTK [86] or spaCy1 would be a good start. However, the application of this method
requires the preservation of the original documents, since reading a text with missing
words can be difficult for a human. We recommend creating an additional column
with the removed stop words and using it for computer processing while providing the
human-readable texts for manual evaluation.

• Removing numbers is used to eliminate the numbers that do not carry useful informa-
tion [77]. For example, data set entries may contain local identifiers that are not very
informative. However, in other cases, numbers such as collision speed or paragraphs in
the context of legal documentation are important for context understanding.

• Stemming is another standard text preprocessing technique often used to reduce the
vocabulary and facilitate text processing [77, 84]. As with the stop words removal, the
original documents must be preserved for further manual processing.

• N-gram inclusion can also be considered to treat the words not as single units, but as
word combinations [77].

• Infrequently used terms can also be removed to reduce the vocabulary [77].

C2: Maintaining readability is necessary for the manually performed steps, i.e., the evaluation
of the context windows and the validation of the results. For this reason, we propose to
maintain two versions of the documents for classification: one version can be left in its original
form and used for the manual steps, while the other version includes the necessary text
processing steps such as lower-casing and noise removal and is processed by the computer. In
this case, one of the challenges is to correctly retrieve the context windows from the original
documents based on the preprocessed version, especially if a fixed context window size is
used.
C3: The pre-defined classes should not be collectively exhaustive, but should only cover the
topics that interest us. Our approach helps classify the documents that have similar semantics
to the pre-defined classes while accepting that documents containing information outside
our scope of interest will not be classified. To explore the topics of unclassified documents,
unsupervised methods such as topic modeling can be used.
C4: When describing the class, a balance must be achieved between the number of keywords
and the amount of time required. In our experiments, many words included in the class
descriptions do not appear in the final context rules, which means that rare words are less
likely to be identified as part of context windows. For domain experts, we recommend taking
3-7 minutes to describe each class, starting with 3-5 keywords. Further research can determine
if increasing the number of keywords improves the explainability of the class.

1https://spacy.io/
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C5: The availability of domain experts to produce meaningful class descriptions is one of
the prerequisites of our approach. In practice, however, access to expertise may be limited,
and employing these individuals can be costly. Once access to domain experts is given,
they need to choose precise keywords for class descriptions. However, the definition of
"precise keywords" is ambiguous. The keyword generation process can be further improved
by defining what is precise and specific and what supporting tools such as Wikipedia, Google
Images, or topic modeling can facilitate this process.
C6: The proposed approach suggests that the classes can be structured in a hierarchical
way. However, in our thesis, we do not directly investigate the application of the proposed
method to the classes with this structure. This gap should be addressed in future research.
We propose to explore two options for creating hierarchical dependencies:

• The first option is that a child class shares some or all of the keywords of a parent class
and receives additional specific keywords to distinguish its features. In this case, more
non-specific and frequent keywords of the parent class are used and the specific words
are overweighted.

• The second option assumes that a parent class and a child class are described by
mutually exclusive keywords. This means that some keywords of the parent class can
be excluded in favor of the newly created class.

C7: Both adding new classes and editing the definition of existing classes is easy with our
approach. For this purpose, either a new class must be added to the class dictionary or the
keywords of the existing classes must be changed. Based on a new definition, new context
windows, context rules, and class vectors can be created. The resulting class vectors are then
used to classify documents in the newly defined classes.
C8: Appropriate description of classes requires either time investment to become familiar with
the problem and the data set, or the availability of industry experts who know their target
audience and are familiar with the commonly used words in a data set. This is necessary
because the process of extracting context windows is highly dependent on the exact string
match of keywords and words in the data set. For this reason, it is important to be familiar
with linguistic features such as formal or informal vocabulary.
C9: Acronyms are often used to describe several terms, e.g. ABS is commonly used instead
of an anti-lock braking system. However, the embeddings of the acronyms are ambiguous
and can confuse the model [87]. Further research should investigate methods to obtain
contextually correct definitions of acronyms, such as those proposed by Charbonnier and
Wartena [87]
C10: In our setting, we allow the use of word combinations as keywords for class descriptions.
In some cases, e.g. when the keywords used are rare and not enough context windows can be
identified, the word combinations can be split into separate words and then used as separate
keywords for identifying context windows in a new search.
C11: In our thesis, we use single sentences containing keywords to represent context windows.
Further research should investigate different representation options for the context windows:
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• First, the context window may contain several consecutive sentences, since in our case it
is common for people to describe the vehicle part in one sentence and continue with
the problem description in the following sentences.

• Second, the context window can contain all the sentences in which the class keywords
appear. For example, the word "engine" can be used in the first sentence and in the fifth
sentence. In this case, the concatenation of these two sentences can be considered as the
context window.

• Third, a context window can be represented using tokens rather than sentences. A
simple approach to determine the length of a context window is using a fixed num-
ber of tokens to the left and right of the keyword. However, our experiments have
demonstrated that this approach often yields ambiguous context windows, as they often
contain the end of one sentence and the beginning of the following sentence, which
presents an unclear context for manual evaluation.

• Fourth, methods for representing context windows using a dynamic number of tokens
on either side of the keyword can be explored.

C12: The ambiguity of context windows arises from the fact that they capture only a small
portion of the document and often do not reveal the full context of the document. For example,
in our early experiments with representing context windows by a fixed number of tokens
surrounding the keyword, they often contained truncated portions of multiple sentences,
making them difficult for a human evaluator to understand. Using single sentences as context
windows helps to exclude truncated sentences, but does not completely solve the problem for
two reasons:

• First, the vehicle component and the problem itself are often described in different
parts of the document. This means that our context window often consists only of
a component description and does not include the problem itself. For example, the
sentence "My engine was repaired within a week" assumes that a person had a problem
with their engine, but does not address the problem.

• Second, due to the informal tone of the documents in the data set, many people do
not use punctuation correctly, resulting in documents consisting of only one sentence
with no logical separators. A context window includes in this case a lot of redundant
information. We propose to consider context windows with a limited length to facilitate
the evaluation. In our thesis, we set the maximum length of the context window to 20
tokens.

Context windows with ambiguous meanings were discarded during the evaluation phase.
Further research should investigate how to reduce the number of ambiguous context windows.
Defining methods that allow extraction of context windows surrounding both the vehicle
component and the problem should lead to higher quality context windows.
C13: The number of context rules is a hyperparameter that can vary depending on the class.
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In this thesis, we use a different number of context rules for each class. Further research can
investigate whether a minimum or an optimal number of context rules can be identified, on
which class features this number depends, and whether the dependency between the quality
of the class vector and an additional context rule can be quantified.
C14: The number of different keywords appearing in context rules is a hyperparameter that
can vary by class. We used a considerable number of keywords for each of the classes, but
the added value of each additional keyword is not clear, since only a few keywords from the
dictionary actually appeared in the context windows and, further, in the context rules that
were de facto used for the calculation of the class vectors. We propose to investigate if the
ratio between the number of keywords in a class description and the number of keywords
used for context rules influences the results.
C15: A manual evaluation of the context windows to consider them as context rules is
one of the essential steps of the proposed approach. However, it requires a considerable
amount of time. In our case, it took the authors of this thesis six to nine minutes to the
evaluation of 50 context windows per class. In a multi-class classification with several dozens
or even hundreds of classes, this step can become a significant bottleneck. Further research
should explore the possibility of reducing the time required by using fewer or shorter context
windows or eliminating this step entirely.
C16: This challenge refers to the fact that context rules can be obtained in a different way
than is the case in this thesis. We provide some thought-provoking ideas for further research
on the identification of context rules:

• A simple approach to determine context rules without prior extraction of context
windows can be performed by artificially creating the context rules from scratch, e.g.
for the class "engine" context rules like "engine damage", "ignition problem" and "rough
idle" can be used to determine the class vector.

• Another idea is to use extracted context windows as inspiration and manually correct
them to meet the requirements of the task. For example, the sentence "the interior
lighting worked well" can be manually replaced with "the interior lighting did not work
well". This method allows the rejection of fewer context windows with only minor
changes.

• A set of universal, class-independent word combinations can be created, which are
then combined with the classes. For example, word combinations such as "... stopped
working" and "problem with ..." can be used in combination with the class keywords to
obtain context rules in the form "engine stopped working" and "problem with interior
lighting".

• The last suggestion leads us to consider that a dictionary can be created not only for
classes but also to capture task-related semantics. In our thesis, we identify issues
related to vehicle components, so an additional dictionary component can be created
to contain the issue-related keywords. It can contain the following keywords: failure,
issue, problem, broke, malfunction, etc. These descriptions can be used as additional
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conditions for context window identification. In this case, a keyword from the class and
problem description must be found in the context of the document.

C17: Many pre-trained models are available for text embedding. In this thesis, we experiment
with the embeddings of the context-free tok2vec model and two contextualized models based
on the SBERT model. We show that contextualized embeddings are superior for our task
and can provide high-quality results with reasonable time consumption. Further research
can explore the application of other state-of-the-art models. We propose to explore sentence
similarity libraries provided by Huggingface2 and consider recent technological developments
such as Token Attention Sentence-BERT [88], which addresses the problem of giving equal
weight to all words in a sentence, and SimCSE [89], which represents the state-of-the-art for
sentence embeddings at the time of writing this thesis.
C18: In our thesis we do not train a new model, but use pre-trained models, because the
additional training step would go beyond the scope of our thesis. However, there are several
ways to train an individual model, e.g. SBERT3 can be used for this purpose.
C19: We use an intuitive average-pooling method to compute class vectors, analogous to
the weighting of individual words in a sentence used for training SBERT. Other approaches
such as min- or max-pooling can be explored, but the intuition behind them does not seem
promising to us.
C20: High similarity scores for pairs of class vectors may indicate that they describe the
same topic and their context rules are very similar. In this case, the same documents may be
assigned multiple times to the classes with different titles. In this case, it is recommended
that the context rules of these classes be investigated and possibly modified to achieve
the expected differentiation. Further research should investigate the maximum acceptable
similarity between class vectors.
C21: In contrast to aggregation of context rule embeddings, more sophisticated approaches
based on supervised learning methods such as K-Nearest Neighbors (KNN) [90] and Support
Vector Machine (SVM) [91] can be applied to context rule embeddings in further research.
For example, KNN can be applied to document embeddings in the classification phase to
evaluate whether they belong to one of the classes represented through multiple embeddings
of context rules.
C22: In our thesis, we use individual sentences of documents to calculate the similarity
score and classify the underlying document. The problem we encounter is that the vehicle
component and the topic can be described in different parts of the document and single
sentences are not representative enough to cover both aspects. The same is true for identifying
multiple topics in one document, which is one of the essential problems for a given task.
Similar to the context window extraction approaches discussed above, other techniques can be
tested in further research to identify text segments of a document with the highest similarity
to the target class:

• Multiple sentences or n-grams of a document can be used as a basis for comparison

2https://huggingface.co/tasks/sentence-similarity
3https://www.sbert.net/docs/training/overview.html
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with the class vectors. For example, two sentences with the highest similarity score can
be concatenated, and the value can be recalculated for that sentence combination.

• For the creation of training data, only documents that contain the keywords from the
class dictionary can be used for similarity detection. Then, the similarity scores are
computed only for sentences or n-grams of these documents. However, this approach
is not recommended for pure unsupervised text classification, since we also want to
capture the documents that contain words outside the predefined class descriptions.

• A sliding window can be used to identify customer complaints that relate to specific
vehicle components. In this case, either a static or a dynamic size of the context window
can be considered. A conventional fixed-size sliding window [37] containing n tokens is
iteratively shifted from left to right starting from the first word, and for each iteration,
the similarity score is computed, considering the window with the highest similarity
score as the class representative. In contrast, a dynamic sliding window can determine
the initial position of the text segment of interest [92].

• A combination of sentence similarity and Question Answering (QA)4 can be further
explored. In this case, a high similarity score from the similarity step is considered as a
signal for a QA model to iterate over the document and determine the passage that can
describe the problem better than a single sentence. It works as follows: when a sentence
with a high class threshold is identified, the QA model takes the entire document as
context and identifies the most appropriate passage that describes the problem with a
targeted vehicle component.

C23: Although the proposed approach is not very time-consuming and can be performed
even with a single laptop, we present some ways to further improve the algorithm:

• Tokenization can be performed once for the entire corpus instead of tokenizing the
sentences at each iteration.

• An iterative itertuples method can be replaced by faster vector calculations.

• Writing some code in Cython5 can be considered.

• Parallelization of processes with multiple workers can be considered.

• The similarity scores can be calculated at a time for each sentence using matrix multipli-
cation instead of calculating the similarity score for each class vector separately.

• The data processing can be performed in the cloud.

C24: A minimum threshold is a hyperparameter that can be adjusted depending on the
underlying task. It has no direct influence on the results but allows for a reduction in the
amount of redundant data. For our experiments, we only stored the data with a similarity

4https://huggingface.co/tasks/question-answering
5https://cython.org/
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score above 0.5. In the future, this value can be better specified depending on the underlying
task.
C25: In this thesis, we use the same class threshold for all classes and perform validation for
values above 0.6 and 0.7. Our experiments show that the number of classified documents
is very sensitive to changes in the class threshold. It means that the calibration of the class
threshold is one of the required procedures that must be conducted by domain experts who
can assess if the obtained validation metrics are sufficient for the underlying task. Further
research can investigate the procedure for adjusting the class threshold, which can include
suggestions for a starting class threshold and how much to change it depending on the
number of identified documents and metrics of the classification report.
C26: Our thesis is primarily concerned with the characteristics of the complaint and the
component description in the data set. Other features such as the car make or the source of
the complaint could potentially be taken into account to improve the model.
C27: To solve the problem of recognizing multiple topics from the same document, we divide
each document into sentences and compute the sentence-class similarities for each sentence of
each document, instead of taking the document embeddings for the calculation of similarities
scores as is commonly used in other researches [93]. The suggested approach is capable of
identifying multiple topics based on the semantics of individual sentences of the document.
C28: In our case, voters are given 50 true and 50 false statements. The false statements are
taken from the classes that are similar to the target class. An additional step can be introduced
to examine the similarity scores of the false sentences with the target class to prove that they
do not belong to this validation class.
C29: At this stage, we assume that the results for each class must be validated by an expert,
and we describe the validation procedure for five classes. However, this stage is comparatively
time-consuming, and we encourage the investigation of methods that reduce the time required.
For validation, we use either 25 or 50 true statements, and measurable results are obtained in
both cases. Future research may specify a minimum number of statements for a class so that
the results can be verified. Another idea is to study the hierarchical structure of classes and
explore whether good results for a lower-level class can causally mean that the results for the
less specific higher-level class are also good and that validation for that class is not required.
C30: We use precision, recall, and F1 score to validate our results. Further research can
evaluate the results using other metrics for quantifiable results, describe the significance of
each metric, and elaborate on the meaning of "good" or "acceptable" results.
C31: The validation procedure can be improved in further research. First, using the same
approach with three voters per class, an additional round of discussion can be organized
after the results are reported to explore the reasons for the voters’ choices. This is particularly
useful when agreement among voters is low. Second, additional raters for each validation
class can be included in the validation process to reduce bias. Third, other assessment
methods can be used in place of majority voting. Fourth, the interpretation of Fleiss’s Kappa
depends on the number of voters and classes and should therefore be treated with caution.
C32: In our experiments, we have obtained strong classification report results using the
proposed approach. The core idea of our method is to identify those parts of the documents
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that describe both the vehicle component and the corresponding problem. Considering that
we use a data set of customer complaints from the automotive industry, it is expected that the
documents describing a problem with the vehicle prevail. For this reason, we remain critical
of our method’s ability to capture the differences in sentiment well and extrapolate to the
tasks where both positive and negative reviews are present. This gap should be addressed in
further research.
C33: The proposed approach requires a human’s attention to the essential and additional
steps. Essential steps include creating class descriptions, evaluating context windows, and
validating results. Additional steps consist of configuring several hyperparameters such as
the class threshold. We present the estimation of the required time for essential steps in
section 6.6. Further research can suggest approaches to reduce the time spent in each of the
manually performed steps.
C34: In classification, documents are assigned to a particular class based on a high similarity
score of one of the sentences contained in the document. In this way, both sentences and
documents can potentially be tested as a basis for training classifiers in further research. On
the one hand, we obtain more sentences than documents and thus more training data. On the
other hand, it is questionable whether the sentences alone contain enough information for
the classifier to correctly classify longer documents.
C35: We believe that optimization in processing steps and suggestions for the hyperparameters
can improve the performance of our approach and reduce the time required both for manual
activities and classification. A non-exhaustive list of potential improvements is summarised
as follows:

• Selecting preprocessing techniques and applying them in a sequence that ensures time
efficiency (C1).

• Defining an optimal number of keywords per class (C4).

• Choosing the length and representation of context windows (C11).

• Determining the optimal number of context rules to describe the class (C13)

• Reducing time for a manual evaluation of context windows (C15).

• Exploring alternative methods for obtaining context rules (C16).

• Exploring other approaches beyond computing the class vector (C21).

• Selecting the approach to classify documents (C22).

• Adjusting a class threshold for each individual class (C25).

• Establishing the number of statements required for validation (C29).

• Reducing labor time required for the suggested approach (C33).
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7.3. Categorization of Identified Challenges

In this section, we structure our findings with respect to the methodology steps introduced in
section 5.3 and identified challenges summarized in section 6.2 to further elaborate on the
answer to the first research question. We follow Li et al. [10] in describing the challenges
from the data, model, and performance perspectives. Since our approach relies heavily on
input from domain experts, we also add a fourth category, the expert perspective. The data
perspective describes the challenges associated with the available text corpora and includes
two challenges. The model perspective, which includes eleven challenges, discusses the
use of different NLP approaches and their combination. The expert perspective, which
includes fourteen challenges, discusses the steps performed by domain experts. Finally, the
performance perspective addresses eight challenges with potential algorithm improvements.
An overview of the categorized challenges can be found in Figure 7.1.

Figure 7.1.: Representation of identified challenges during the classification process using the
proposed approach in four categories.

7.4. Application of Unsupervised Learning Methods

Previously, we demonstrated that common unsupervised learning methods such as cluster-
ing or topic modeling cannot be used alone to classify documents into predefined classes.
However, they can be used as a complement to the proposed approach in the exploration
phase to identify keywords either for class descriptions or for describing other task-specific
semantics. It is worth mentioning that the use of these techniques is not necessary to obtain

80



7. Discussion

representative results with our approach, but they can be used in combination with other
supporting methods. We share some ideas on how to improve exploration with unsupervised
learning techniques in the future:

• General and custom stop words can be removed from the data set.

• Lemmatisation or stemming can be applied to the data.

• A different number of topics or clusters can be tested to explore different keywords.

• The state-of-the-art approaches such as BERTopic [94] can be tested to obtain better
results.

7.5. Advantages of the Proposed Approach

In this section we give a brief overview of the advantages of the suggested approach:

• As our calculations show, up to 79% of the manual labor time can be saved using our
approach in comparison to the manual annotation while increasing the number of
labeled documents.

• A document can be assigned to multiple classes.

• Both classified documents and sentences can potentially be used to train the classifier in
the subsequent step.

• The proposed approach is robust to the changing requirements. Additional classes can
be flexibly added, removed, or redefined.

• Our approach allows using hierarchical dependencies between classes.

• In this thesis we show that the proposed method has potential to be employed indepen-
dently from the classifier training as a tool for unsupervised text classification.
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In this exploratory work on obtaining training data from unlabeled text corpora, we investi-
gated an approach that combines various NLP techniques with expert knowledge to classify
documents into several pre-defined classes. The motivation behind this work was to help
industry experts perform classification tasks in an environment with domain-specific target
classes, missing annotated data, and frequently changing requirements.

The suggested approach relied on the use of pre-trained NLP models and the computation
of cosine similarity between document and class embeddings. We conducted experiments
with context-free and contextual transformer-based embedding models. The former is used as
a benchmark and the latter to obtain state-of-the-art results. As a basis for our computations,
we used an open-source data set of consumer complaints provided by NHTSA, which contains
over 1.3 million samples collected over the last three decades.

Instead of time-consuming and costly manual annotation of documents, we used domain
expertise to describe classes based only on their titles with some keywords. These class
descriptions were then used to obtain context windows, which were then evaluated to become
context rules and used to compute class vectors. For each pair of a class vector on one side
and the embedding of each sentence of each document on the other side, the similarity score
was computed. Depending on the similarity score and, more importantly, the class threshold,
the documents were assigned to either one, several, or none of the target classes. Result
validation was then performed with the cooperating company’s domain experts, classification
reports for each class were generated, and agreement between raters was measured.

Our results show that contextually enriched SBERT-based models significantly outperform
a context-free tok2vec model. We present validation results for four rounds of validation
with three embedding models, five validation classes, and two similarity thresholds. In our
experiments, the SBERT-based models achieved the F1 score up to the maximum value of 1.0,
supported by significant inter-rater agreement, while the classification results of the tok2vec
model can be described as insufficient.

The proposed approach not only provides convincing classification results, but also solves
other problems encountered in the industry, which are described in the introductory chapter.
First, our calculations show that the time required to obtain training data for our task can be
reduced by 79% compared to the manual annotation method. Second, due to the fact that
target classes can be easily removed, added, or redefined, our approach is robust to frequent
changes in requirements. Third, the developed approach allows industry experts to define
only the classes of interest, thus filtering out irrelevant information. Fourth, this method is
able to identify not only typical class features such as vehicle components, but also other
semantic features such as negative sentiments. Fifth, the proposed approach can identify
multiple topics in the same document.
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We would like to additionally highlight the novelty of the proposed approach. First,
instead of traditional manual data annotation, we relied on the expertise of people who
are knowledgeable in their domain, understand the underlying task, and can validate the
results. Second, we introduced concepts such as context windows and context rules and
gave definitions to them. Third, we developed a framework that generalizes to classification
tasks in other industries. Fourth, we showed that our approach, although intended only for
identifying training data, has significant potential to be used as a tool for unsupervised text
classification independent of the subsequent training of a text classifier.

An important goal of this work was also to identify challenges in the algorithm pipeline.
These are intended to provide thought-provoking ideas on the development potential and
to encourage further research. We identified the limitations of the proposed approach and
formulated 35 challenges divided into four categories.

We also explored the application of topic modeling and clustering for the classification of
automotive complaints. We showed that these approaches are not able to identify specific
classes needed for our task, but they can be used for exploratory purposes to get an overview
of commonly used keywords in the data set. Some of these keywords can be used by industry
experts to create class descriptions.

In conclusion, we believe that further investigation of the proposed approach can achieve
improvements in the classification process and allow this method to be used in a completely
unsupervised manner to obtain a labeled data set without additional training of a supervised
text classifier.
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Table A.1.: Class codes used for classification

Class code Class name

0 airbags
1 back over prevention
2 child seat
3 electrical system
4 electronic stability control
5 engine
6 equipment
7 exterior lighting
8 forward collision avoidance
9 fuel propulsion system
10 interior lighting
11 lane departure
12 latches locks linkages
13 parking brake
14 power train
15 seats
16 seat belts
17 service brakes
18 steering
19 structure
20 suspension
21 tiers
22 traction control system
23 vehicle speed control
24 visibility
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1 master_components_dictionary = {
2 ’electrical system’: [’electrical’, ’electricity’, ’energy’, ’cablecord’, ’body control’, ’

seat heater’, ’outlet’, ’jack’, ’port’, ’usb’, ’fuel level sensor’, ’hill descent’, ’
driver assistance’, ’fuel gauge’, ’hud’, ’display’, ’odometer’, ’chime’, ’parking assist’,
’park assist’, ’starter’, ’relay’, ’hand heater’, ’hill start’, ’instrument panel’, ’

horn’, ’fuse’, ’circuit’, ’driver monitoring’, ’fuel cell’, ’charge’, ’camera’, ’battery’],

3 ’air bags’: [’airbag’, ’air bag’, ’knee bolster’, ’inflator’, ’clock spring’, ’srs’, ’
supplemental restraint’],

4 ’engine’: [’engine’, ’ignition’, ’screen filter’, ’pressure sensor’, ’generator’, ’alternator’,
’drive belt’, ’chain belt’, ’drain plug’, ’radiator’, ’emission’, ’catalytic convertor’, ’

solenoid’, ’seals gasket’],
5 ’power train’: [’power train’, ’powertrain’, ’torque converter’, ’column shift’, ’tcm’, ’pcm’,

’park start’, ’neutral start’, ’floor shift’, ’floorshift’, ’axle shaft’, ’axle assembly’,
’axle hub’, ’shift pattern indicator’, ’transmission’],

6 ’steering’: [’steering’, ’tie rod’, ’gear box’, ’gearbox’, ’gear stick’, ’mounting bracket’, ’
shaft pitman’, ’power assist’, ’knuckle’, ’idler’, ’handle bar’, ’column locking’, ’pinion
shaft’, ’shaft sector’, ’yaw rate sensor’],

7 ’vehicle speed control’: [’speedometer’, ’accelerator pedal’, ’speed sensor’, ’speed control’,
’throttle’, ’cruise control’],

8 ’service brakes’: [’brake’, ’low pressure warning’, ’governor’, ’quick release valve’],
9 ’fuel/propulsion system’: [’fuel’, ’propulsion’, ’gasoline’, ’refuel’, ’gas’, ’diesel’, ’

petrol’],
10 ’tires’: [’tire’, ’wheel’, ’tread wear’, ’flat spot’],
11 ’suspension’: [’suspension’, ’coil spring’, ’damper’, ’steering pull’, ’bumpy ride’],
12 ’exterior lighting’: [’exterior light’, ’running light’, ’beam dimmer’, ’tail light’, ’reverse

light’, ’fog light’, ’light control’, ’brake light’, ’headlight’, ’daytime light’, ’
flasher unit’, ’turn signal’, ’turn light’],

13 ’electronic stability control’: [’esc’, ’electronic stability’, ’esp’, ’dsc’, ’dynamic
stability’, ’antilock brake’,’anti lock brake’],

14 ’seats’: [’seat’, ’carseat’, ’headrest’, ’slide adjuster’, ’adjuster rod’, ’cushion’],
15 ’seat belts’: [’seat belt’, ’seatbelt’, ’shoulder harness’, ’shoulder strap’, ’buckle’],
16 ’structure’: [’structure’, ’roof’, ’pillar’, ’body’, ’escape exit’, ’egress exit’, ’sun visor’,

’underbody’, ’door’, ’frame’, ’ceiling’, ’bumper’, ’interior panel’, ’dashboard’],
17 ’equipment’: [’equipment’, ’antitheft’, ’anti theft’, ’water heater’, ’storage tank’, ’radio’,

’tape’, ’cd’, ’fire suppression’, ’dongle’, ’gps’, ’navigation’, ’helmet’, ’bluetooth’, ’
wifi’, ’touchscreen’, ’monitor’, ’tv’, ’speaker’, ’air conditioner’, ’air con’],

18 ’visibility’: [’vision’, ’visibility’, ’wiper’, ’sun visor’, ’windshield’, ’glass’, ’rearview’,
’condensor’, ’evaporator’, ’rear window’, ’defroster’, ’defogger’, ’hvac’],

19 ’latches/locks/linkages’: [’latch’, ’lock’, ’linkage’],
20 ’child seat’: [’child’, ’infant’, ’baby’],
21 ’parking brake’: [’parking’, ’brake’, ’emergency’],
22 ’interior lighting’: [’interior’, ’light’, ’instrument panel’, ’dome’, ’dash cluster display’,

’dash’, ’overhead’],
23 ’traction control system’: [’traction’, ’stabilitrak’, ’vsc light’],
24 ’forward collision avoidance’: [’collision’, ’lidar’, ’adaptive lighting’, ’automatic

emergency braking’, ’automatic braking’, ’pedestrian recognition’, ’cyclist recognition’, ’
crash sensor’, ’brake assist’, ’dynamic brake support’],

25 ’back over prevention’: [’backover’, ’back over’, ’back up’, ’blind’, ’backup’],
26 ’lane departure’: [’lane’, ’blind’, ’spot’, ’assist’],

Figure A.1.: The class dictionary used for classification.
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A. General Addenda

Figure A.2.: E-mail template used to approach domain experts for the validation procedure.
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